受限条带覆盖与在线背包问题的深入剖析
受限条带覆盖问题(RSC)
整数规划模型
为解决受限条带覆盖问题(RSC),提出了一种整数规划模型。首先定义了几个索引集:$J = {1, 2, \ldots, L}$,$I = {1, 2, \ldots, m}$ 和 $S = {1, 2, \ldots, n}$。并引入了以下变量:
- $y_{i,j} \in {0, 1}$,对于所有 $i \in I$ 和 $j \in J$,若点 $i$ 在时间 $j$ 被某个传感器覆盖,则 $y_{i,j}$ 为 1,否则为 0。
- $z_{s,j} \in {0, 1}$,对于所有 $s \in S$ 和 $j \in J$,若传感器 $s$ 在时间 $j$ 开启,则 $z_{s,j}$ 为 1,否则为 0。
- $M \in Z$,表示解的值。
该整数规划模型的目标是最大化 $M$,并满足以下约束条件:
1. $\sum_{j} z_{s,j} \leq 1$,对于所有 $s \in S$,表示每个传感器只能开启一次。
2. $y_{i,j} \leq \sum_{s:i \in R(s)} \sum_{k = j - d(s) + 1}^{j} z_{s,k}$,对于所有 $i \in I$ 和 $j \in J$,表示点 $i$ 只有在某个传感器开启时才能在时间 $j$ 被覆盖。
3. $y_{i,j + 1} \leq y_{i,j}$,对于所有 $i \in I$ 和 $j \in J \setminus {L}$,确保点 $i$ 只有在时间 $j$ 被覆盖时才能在时间 $j + 1$ 被覆盖。
4. $M
超级会员免费看
订阅专栏 解锁全文

被折叠的 条评论
为什么被折叠?



