9、受限条带覆盖与在线背包问题的深入剖析

受限条带覆盖与在线背包问题的深入剖析

受限条带覆盖问题(RSC)
整数规划模型

为解决受限条带覆盖问题(RSC),提出了一种整数规划模型。首先定义了几个索引集:$J = {1, 2, \ldots, L}$,$I = {1, 2, \ldots, m}$ 和 $S = {1, 2, \ldots, n}$。并引入了以下变量:
- $y_{i,j} \in {0, 1}$,对于所有 $i \in I$ 和 $j \in J$,若点 $i$ 在时间 $j$ 被某个传感器覆盖,则 $y_{i,j}$ 为 1,否则为 0。
- $z_{s,j} \in {0, 1}$,对于所有 $s \in S$ 和 $j \in J$,若传感器 $s$ 在时间 $j$ 开启,则 $z_{s,j}$ 为 1,否则为 0。
- $M \in Z$,表示解的值。

该整数规划模型的目标是最大化 $M$,并满足以下约束条件:
1. $\sum_{j} z_{s,j} \leq 1$,对于所有 $s \in S$,表示每个传感器只能开启一次。
2. $y_{i,j} \leq \sum_{s:i \in R(s)} \sum_{k = j - d(s) + 1}^{j} z_{s,k}$,对于所有 $i \in I$ 和 $j \in J$,表示点 $i$ 只有在某个传感器开启时才能在时间 $j$ 被覆盖。
3. $y_{i,j + 1} \leq y_{i,j}$,对于所有 $i \in I$ 和 $j \in J \setminus {L}$,确保点 $i$ 只有在时间 $j$ 被覆盖时才能在时间 $j + 1$ 被覆盖。
4. $M

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值