【cs.AI】25.1.15 arxiv更新速递

【cs.AI】25.1.15 arxiv更新81篇

—第1篇----

=====

Reward Machines for Deep RL in Noisy and Uncertain Environments

🔍 关键词: Reward Machines, Deep RL, Noisy Environments, Uncertain Environments, POMDP
链接1

摘要: 奖励机提供了一种受自动机启发的结构,用于指定指令、安全约束和其他时间扩展的奖励行为。通过暴露奖励函数的底层结构,它们能够分解 RL 任务,从而在样本效率方面取得显著的进步。尽管奖励机和类似的正式规范在顺序决策问题中有着丰富的应用历史,但它们严重依赖于对构成奖励函数基础的领域特定词汇的真实解释——由于部分可观察性和噪声感知,这种真实解释在现实世界中难以捉摸。在这项工作中,我们探讨了在噪声和不确定环境中使用奖励机进行深度强化学习。我们将这个问题描述为一个 POMDP,并提出了一套 RL 算法,这些算法在对领域特定词汇的不确定解释下利用任务结构。通过理论和实验,我们揭示了这种问题中朴素方法的陷阱,同时展示了如何在对词汇的噪声解释下成功利用任务结构。 总结: 本文提出了一种利用奖励机进行深度强化学习的方法,该方法能够在噪声和不确定环境中有效地处理部分可观察性和噪声感知问题。
###【arXiv编号】2406.00120v4
###【git】无
###【期刊】无
###【领域】强化学习,机器学习,人工智能

[推荐指数:4]

推荐理由: 本文针对深度强化学习在噪声和不确定环境中的应用提出了新的方法,并通过理论和实验验证了其有效性。该方法能够有效地利用任务结构,并克服了现有方法的局限性,具有较高的研究价值和应用潜力。

=====

—第2篇----

=====

Consistency of Responses and Continuations Generated by Large Language Models on Social Media

🔍 关键词: Large Language Models, Emotional Consistency, Semantic Coherence, Social Media, Gemma, Llama
链接1

摘要: 本文研究了大型语言模型(LLM)在社交媒体环境下处理情感内容和保持语义一致性的能力。研究使用Gemma和Llama两个开源模型,通过分析Twitter和Reddit上的气候变化讨论,考察了人机交互内容中的情感转变、强度模式和语义相似性。研究发现,虽然两个模型都保持了较高的语义一致性,但它们表现出不同的情感模式:Gemma倾向于放大负面情绪,特别是愤怒,同时保持一定程度的正面情绪,如乐观情绪;Llama则在更广泛的情感范围内表现出更优越的情感保存能力。两个模型在响应任务中系统地生成情感强度减弱的响应,并且在响应任务中表现出对正面情绪的偏好。此外,两个模型都与原始文本保持了很强的语义相似性,尽管在延续和响应任务之间的性能有所不同。这些发现为LLM的情感和语义处理能力提供了见解,对它们在社交媒体环境中的部署以及人机交互设计具有重要意义。
###【arXiv编号】2501.08102v2
###【领域】自然语言处理,人工智能,人机交互

[推荐指数:4]

推荐理由: 本文研究了LLM在社交媒体环境下的情感和语义处理能力,并对不同模型在情感表达和语义一致性方面的差异进行了深入分析,具有较高的研究价值和现实意义。

=====

—第3篇----

=====

Personality Modeling for Persuasion of Misinformation using AI Agent

🔍 关键词: cs.CL, cs.AI, cs.GT
链接1

摘要: 这项研究通过使用基于代理的建模方法,研究了人格特质与错误信息传播之间的关系。研究人员使用六个 AI 代理来体现大五人格特质的不同维度(外向性、宜人性、神经质),模拟了六个不同错误信息主题的互动。实验通过使用 GLM-4-Flash 模型的 AgentScope 框架实施,产生了 90 种独特的互动,揭示了人格组合如何影响说服和抵抗错误信息传播的复杂模式。 总结: 这项研究使用 AI 代理模拟了不同人格特质在错误信息传播中的影响,发现分析性和批判性的人格特质可以增强基于证据的讨论的有效性,而非攻击性的说服策略在纠正错误信息方面取得了意想不到的成功。
###【arXiv编号】2501.08985v1
###【git】无
###【期刊】无
###【领域】计算机科学,人工智能,博弈论

[推荐指数:4]

推荐理由: 这项研究使用 AI 代理模拟了不同人格特质在错误信息传播中的影响,并得出了有价值的结论,为开发个性化干预措施提供了新的见解。

=====

—第4篇----

=====

How Do Generative Models Draw a Software Engineer? A Case Study on Stable Diffusion Bias

🔍 关键词: cs.SE, cs.AI
链接1

摘要: 本文研究了生成模型在生成与软件工程相关的图像时是否会加剧社会偏见。研究人员使用三种版本的 Stable Diffusion 模型(SD 2、SD XL 和 SD 3)生成了 6,720 张图像,并评估了这些图像中性别和种族的差异。结果表明,所有模型在代表软件工程师时都明显偏向男性。SD 2 和 SD XL 则强烈偏向白人,而 SD 3 则略微偏向亚洲人。然而,所有模型都明显低估了黑人和阿拉伯人的数量,无论使用的提示风格如何。
总结: 本文研究了 Stable Diffusion 模型在生成软件工程相关图像时存在的性别和种族偏见,并强调了在使用这些模型生成内容时需要谨慎。
###【arXiv编号】2501.09014v1
###【领域】计算机科学、软件工程、人工智能

[推荐指数:4]

推荐理由: 本文对 Stable Diffusion 模型在生成软件工程相关图像时存在的性别和种族偏见进行了深入研究,并提出了警示,具有较高的研究价值。

=====

—第5篇----

=====

Multimodal LLMs Can Reason about Aesthetics in Zero-Shot

🔍 关键词: Multimodal LLMs, Aesthetics, Art Evaluation, MM-StyleBench, ArtCoT, Style Transfer, Artistic Image Generation
链接1

摘要: 本文首次研究了如何利用多模态大型语言模型 (MLLMs) 的推理能力来评估艺术作品的美学。为了促进这项研究,我们构建了 MM-StyleBench,一个用于艺术风格化基准测试的新型高质量数据集。然后,我们开发了一种原理性的方法来进行人类偏好建模,并对 MLLMs 的响应与人类偏好进行了系统性的相关性分析。我们的实验揭示了 MLLMs 在艺术评估中固有的幻觉问题,与响应的主观性有关。提出了 ArtCoT,证明了特定于艺术的任务分解和具体语言的使用可以增强 MLLMs 对美学的推理能力。我们的发现为 MLLMs 在艺术方面的应用提供了宝贵的见解,并可以使各种下游应用受益,例如风格迁移和艺术图像生成。代码可在 https://github.com/songrise/MLLM4Art 获得。 总结: 本文研究了如何利用多模态大型语言模型 (MLLMs) 的推理能力来评估艺术作品的美学,并提出了一个新的数据集 MM-StyleBench 和一种新的方法 ArtCoT 来提高 MLLMs 在艺术评估中的性能。
###【arXiv编号】2501.09012v1
###【git】https://github.com/songrise/MLLM4Art
###【期刊】无
###【领域】计算机视觉,人工智能,自然语言处理,多媒体

[推荐指数:4]

推荐理由: 本文首次研究了如何利用多模态大型语言模型 (MLLMs) 的推理能力来评估艺术作品的美学,并提出了一个新的数据集 MM-StyleBench 和一种新的方法 ArtCoT 来提高 MLLMs 在艺术评估中的性能。这项研究具有很高的创新性,并且具有重要的应用价值,可以应用于艺术风格迁移和艺术图像生成等领域。

=====

—第6篇----

=====

AI-RAN: Transforming RAN with AI-driven Computing Infrastructure

🔍 关键词: AI-RAN, RAN, AI, computing infrastructure, converged compute-communication platforms, AI-for-RAN, AI-on-RAN, AI-and-RAN
链接1

摘要: 这篇文章介绍了 AI-RAN,它将 RAN 和人工智能 (AI) 工作负载集成到同一个基础设施中。通过这样做,AI-RAN 不仅满足了未来网络的性能需求,而且还提高了资产利用率。文章首先探讨了 RAN 如何从移动宽带演变到 AI-RAN,并阐述了 AI-RAN 的三种形式:AI-for-RAN、AI-on-RAN 和 AI-and-RAN。然后,文章确定了 AI-RAN 中通信和计算融合的关键要求和促成因素。文章还提供了一个参考架构,用于将 AI-RAN 从概念推进到实践。为了说明 AI-RAN 的实际潜力,文章展示了一个概念验证,该验证使用 NVIDIA Grace-Hopper GH200 服务器同时处理 RAN 和 AI 工作负载。最后,文章概述了未来的工作方向,以指导 AI-RAN 的进一步发展。 总结: AI-RAN 将 RAN 和 AI 工作负载集成到同一个基础设施中,以满足未来网络的性能需求,并提高资产利用率。
###【arXiv编号】2501.09007v1
###【git】
###【期刊】
###【领域】计算机科学,网络,信号处理

[推荐指数:4]

推荐理由: 这篇文章介绍了 AI-RAN 的概念,并提供了详细的架构和应用场景,具有较高的创新性和实用性。

=====

—第7篇----

=====

Development and Validation of the Provider Documentation Summarization Quality Instrument for Large Language Models

🔍 关键词: Large Language Models, electronic health record, clinical summaries, Provider Documentation Summarization Quality Instrument (PDSQI-9), inter-rater reliability
链接1

摘要: 随着大型语言模型 (LLM) 被整合到电子健康记录 (EHR) 工作流程中,验证过的工具对于评估其在实施之前的性能至关重要。现有的医疗记录质量评估工具往往不适合 LLM 生成的文本的复杂性,并且缺乏对真实世界数据的验证。为了评估 LLM 生成的临床摘要,开发了医疗记录摘要质量评估工具 (PDSQI-9)。使用多个 LLM(GPT-4o、Mixtral 8x7b 和 Llama 3-8b)从多个专业的真实世界 EHR 数据中生成多文档摘要。验证包括皮尔逊相关性以进行实质性效度、因子分析和克朗巴赫系数以进行结构效度、评分者间信度 (ICC 和克里彭多夫系数) 以进行泛化性、半德尔菲过程以进行内容效度,以及高质量摘要与低质量摘要的比较以进行区分效度。七名医生评分者评估了 779 个摘要并回答了 8,329 个问题,评分者间信度超过 80% 的效力。PDSQI-9 表现出强大的内部一致性 (克朗巴赫系数 = 0.879;95% CI:0.867-0.891) 和高评分者间信度 (ICC = 0.867;95% CI:0.867-0.868),支持结构效度和泛化性。因子分析确定了一个 4 因子模型,解释了 58% 的方差,代表组织、清晰度、准确性和效用。实质性效度得到笔记长度与简洁 (rho = -0.200, p = 0.029) 和组织 (rho = -0.190, p = 0.037) 分数之间相关性的支持。区分效度区分了高质量摘要和低质量摘要 (p < 0.001)。PDSQI-9 表现出强大的结构效度,支持其在临床实践中用于评估 LLM 生成的摘要,并促进 LLM 更安全地整合到医疗保健工作流程中。
###【arXiv编号】2501.08977v1
###【领域】计算机科学,人工智能

[推荐指数:4]

推荐理由: 本文提出了一种评估 LLM 生成的临床摘要质量的工具,并进行了验证,证明了其有效性和可靠性,为 LLM 在医疗领域的应用提供了重要的参考。

=====

—第8篇----

=====

Learning Low-Dimensional Strain Models of Soft Robots by Looking at the Evolution of Their Shape with Application to Model-Based Control

🔍 关键词: cs.RO, cs.AI
链接1

摘要: 获取连续软机器人的动态模型对于软机器人的分析和控制至关重要,研究人员一直致力于提出数据驱动和第一性原理解决方案。然而,这两种方法都显示出其局限性;前者缺乏结构,在训练数据之外表现不佳,而后者需要大量的简化和广泛的专业知识才能在实践中使用。本文介绍了一种简化的学习低维、基于物理模型的方法,该方法既准确又易于解释。我们从一个算法开始,该算法使用图像数据(即形状演变)来确定描述软机器人运动所需的最小必要段。在此之后,我们应用动态回归和应变稀疏化算法来识别相关应变并定义模型的动力学。我们通过对各种平面软操纵器的模拟验证了我们的方法,将其性能与其他学习策略进行了比较,结果表明我们的模型在计算效率方面都更高,并且在训练外分布输入上的准确率提高了 25 倍。最后,我们证明了由于该方法能够生成物理兼容模型,因此学习到的模型可以与基于模型的控制策略直接结合。
总结: 本文提出了一种简化的学习低维、基于物理模型的方法,该方法既准确又易于解释,并能够生成物理兼容模型,可以与基于模型的控制策略直接结合。
###【arXiv编号】2411.00138v3
###【git】无
###【期刊】无
###【领域】机器人

[推荐指数:4]

推荐理由: 本文提出了一种新的学习软机器人模型的方法,该方法能够生成物理兼容模型,可以与基于模型的控制策略直接结合,具有较高的创新性和实用性。

=====

—第9篇----

=====

Trusted Machine Learning Models Unlock Private Inference for Problems Currently Infeasible with Cryptography

🔍 关键词: cs.CR, cs.AI, cs.LG
链接1

摘要: 我们经常与不可信的第三方进行交互。隐私的优先级可能会限制这些交互的有效性,因为实现某些目标需要共享私人数据。传统上,解决这一挑战的方法包括寻求可信的中介机构或构建限制数据泄露量的加密协议,例如多方计算或零知识证明。虽然加密方法的扩展方面取得了重大进展,但它们在可用于的应用程序的大小和复杂性方面仍然有限。在本文中,我们认为,能够胜任的机器学习模型可以充当可信第三方,从而为以前不可行的应用程序实现安全计算。特别是,我们将可信的能够胜任的模型环境(TCME)描述为扩展安全计算的一种替代方法,其中能够胜任的机器学习模型在输入/输出约束下进行交互,具有明确的信息流控制和显式无状态性。这种方法旨在实现隐私和计算效率之间的平衡,从而实现私有推理,而传统的加密解决方案目前无法实现。我们描述了由 TCME 启用的许多用例,并表明即使是一些简单的经典加密问题也可以用 TCME 解决。最后,我们概述了当前的局限性,并讨论了实现它们的未来道路。
总结: 本文提出了一种新的安全计算方法,即可信的能够胜任的模型环境(TCME),利用机器学习模型作为可信第三方,在隐私和计算效率之间取得平衡,实现私有推理,解决传统加密方法无法解决的复杂问题。
###【arXiv编号】2501.08970v1
###【git】无
###【期刊】无
###【领域】计算机安全,人工智能,机器学习

[推荐指数:4]

推荐理由: 本文提出了一种新颖的解决私有推理问题的方法,利用机器学习模型作为可信第三方,在隐私和计算效率之间取得平衡,具有较高的创新性。

=====

—第10篇----

=====

An analysis of data variation and bias in image-based dermatological datasets for machine learning classification

🔍 关键词: cs.CV, cs.AI, I.5.4; J.3
链接1

摘要: 人工智能算法在帮助医疗保健专业人员方面变得越来越有价值。这些模型获得的越来越高的置信度有助于满足关键决策需求。在临床皮肤病学中,分类模型可以使用仅 RGB 图像作为输入来检测患者皮肤上的恶性病变。然而,大多数基于学习的方法采用从皮肤镜数据集获取的数据进行训练,这些数据集很大,并由金标准验证。临床模型旨在处理用户智能手机摄像头上的分类,这些摄像头不包含皮肤镜提供的相应分辨率。此外,临床应用带来了新的挑战。它可能包含来自不受控制环境的捕获、肤色变化、视角变化、数据和标签中的噪声以及不平衡的类别。一种可能的替代方法是使用迁移学习来处理临床图像。然而,由于样本数量很少,它会导致模型性能下降;训练中使用的源分布与测试集不同。这项工作旨在评估皮肤镜样本和临床样本之间的差距,并了解数据集变化如何影响训练。它评估了扰乱模型预测的分布之间主要差异。最后,从对不同架构的实验中,我们论证了如何结合来自不同分布的数据,从而减少对模型最终准确性的影响。
总结: 本文分析了皮肤镜图像和临床图像之间的差异,并研究了这种差异对皮肤病学图像分类模型的影响。
###【arXiv编号】2501.08962v1
###【git】无
###【期刊】无
###【领域】计算机视觉、人工智能、医疗保健

[推荐指数:4]

推荐理由: 本文深入分析了皮肤镜图像和临床图像之间的差异,并提出了解决这种差异的方法,具有较高的创新性。

=====

—第11篇----

=====

A Discrete-sequence Dataset for Evaluating Online Unsupervised Anomaly Detection Approaches for Multivariate Time Series

🔍 关键词: Anomaly Detection, Multivariate Time Series, Dataset, Automotive Powertrain
链接1

摘要: 由于缺乏高质量的数据集,对多元时间序列的异常检测方法进行基准测试非常具有挑战性。目前公开可用的数据集规模太小,缺乏多样性,并且包含微不足道的异常,这阻碍了该研究领域的量化进展。我们提出了一种解决方案:一个多样化、广泛且非平凡的数据集,该数据集通过最先进的仿真工具生成,反映了汽车动力总成的真实行为,包括其多元、动态和可变状态特性。为了满足无监督和半监督异常检测设置以及时间序列生成和预测的需求,我们提供了数据集的不同版本,其中训练和测试子集根据任务提供污染和干净版本。我们还提供了基于确定性和变分自动编码器以及非参数方法的一小部分方法的基准结果。正如预期的那样,基准实验表明,在半监督版本的数据集上训练的方法优于其无监督对应方法,这突出了对更能抵抗受污染训练数据的更鲁棒方法的需求。 总结: 本文提出了一种基于汽车动力总成真实行为的多元时间序列异常检测数据集,该数据集可以用于评估无监督和半监督异常检测方法。
###【arXiv编号】2411.13951v3
###【git】无
###【期刊】无
###【领域】计算机科学,人工智能,控制工程,系统科学,信号处理

[推荐指数:4]

推荐理由

该数据集具有以下优点:

  1. 数据集规模大,包含多元、动态和可变状态特性,能够真实反映汽车动力总成的行为。
  2. 数据集包含污染和干净版本,可以用于评估无监督和半监督异常检测方法。
  3. 提供了基准结果,可以作为比较不同方法性能的参考。
    该数据集的不足之处在于:
  4. 数据集生成方法较为复杂,可能需要一定的专业知识才能使用。
  5. 数据集的规模仍然有限,可能无法完全满足所有研究需求。
    总体来说,该数据集是一个非常有价值的资源,可以用于评估多元时间序列异常检测方法,并推动该领域的发展。

—第12篇----

=====

Identifying Spurious Correlations using Counterfactual Alignment

🔍 关键词: cs.CV, cs.AI, cs.LG
链接1

摘要: 模型受虚假关联驱动通常会导致泛化性能较差。我们提出了反事实 (CF) 对齐方法来检测和量化黑盒分类器的虚假关联。我们的方法基于针对一个分类器生成的关于反事实图像,这些图像被输入到其他分类器中,以查看它们是否也引起了这些分类器输出的变化。这些响应之间的关系可以被量化并用于识别存在虚假关联的特定实例。通过观察人脸属性和水鸟分类器中的直观趋势,以及通过伪造虚假关联并检测它们的存在(视觉和定量地)来验证这一点。此外,利用 CF 对齐方法,我们证明我们可以通过检测虚假关联的减少来评估鲁棒优化方法(GroupDRO、JTT 和 FLAC)。 总结: 本文提出了一种基于反事实图像生成的反事实对齐方法,用于检测和量化黑盒分类器的虚假关联,并通过实验验证了其有效性。
###【arXiv编号】2312.02186v3
###【git】
###【期刊】
###【领域】计算机视觉,人工智能,机器学习

[推荐指数:4]

推荐理由:本文提出了一种新颖的反事实对齐方法,用于检测和量化黑盒分类器的虚假关联,并通过实验验证了其有效性,具有较高的创新性和实用性。

=====

—第13篇----

文章名称

Kolmogorov-Arnold Networks for Time Series Granger Causality Inference

🔍 关键词: Granger Causality, Kolmogorov-Arnold Networks, Time Series, Causal Inference
arXiv链接

摘要: 该论文提出了Granger Causality Kolmogorov-Arnold Networks (GCKAN),这是一个创新的架构,将最近提出的Kolmogorov-Arnold Networks (KAN)扩展到因果推理领域。通过从KAN层中提取基权重并结合稀疏诱导惩罚和岭正则化,GCKAN可以从时间序列中推断格兰杰因果关系,同时实现自动时滞选择。此外,作者提出了一种算法,利用时间反向格兰杰因果关系来提高推断的准确性。该算法比较原始和时间反向序列派生的预测和稀疏诱导损失,自动选择更高得分的因果关系或整合结果以减轻虚假连通性。对Lorenz-96、基因调控网络、fMRI BOLD信号和VAR数据集进行的全面实验表明,所提出的模型在从非线性、高维和样本有限的时间序列中推断格兰杰因果关系方面优于最先进的方法。

总结: 该文章提出了一种新的Granger Causality Kolmogorov-Arnold Networks (GCKAN)模型,可以从时间序列中推断格兰杰因果关系,并提出了一种算法利用时间反向信息提高推断准确性,在多个数据集上表现优于现有方法。

###【arXiv编号】2501.08958v1
###【领域】机器学习、人工智能、时间序列分析

[推荐指数:4]

推荐理由

该文章提出了一种创新性的模型GCKAN,能够从复杂的时间序列数据中准确推断格兰杰因果关系,同时提出了一种利用时间反向信息的算法来进一步提高推断准确性。该方法在多个实际数据集上都表现优秀,具有较强的实用价值和推广潜力。从创新性、实用性和影响力等方面来看,这篇文章值得高度推荐。

—第14篇----

这篇文章属于计算机研究领域,主要分析了6种大型语言模型的道德推理。

摘要: 这项研究检查了六大知名生成式大型语言模型(OpenAI GPT-4o、Meta LLaMA 3.1、Perplexity、Anthropic Claude 3.5 Sonnet、Google Gemini和Mistral 7B)的道德推理。研究探讨了这些模型如何阐述和应用道德逻辑,特别是在应对诸如电车难题和海因斯困境等道德困境时。该研究采用可解释性-透明度框架,提示模型解释其道德推理。这一方法通过三种既定的道德分类法进行分析:后果主义-义务论分析、道德基础理论和科尔伯格道德发展模型。研究发现,大型语言模型表现出在很大程度上相似的道德逻辑,突出理性主义的后果主义倾向,其决策通常会优先考虑伤害最小化和公平性。尽管在预训练和模型架构方面存在相似性,但在道德推理方面还是出现了细微和重大差异,反映了微调和后训练过程的变化。这些模型一致地展现出渊博、谨慎和自我意识,其道德推理堪比道德哲学研究生水平的论述。令人惊讶的是,这些系统都将其道德推理描述为比典型人类道德逻辑更为复杂。

总结: 该论文分析了6种大型语言模型在处理道德困境时的推理逻辑和方法,发现它们表现出很强的理性主义和后果主义倾向,并认为自己的道德推理水平超过一般人类。

—第15篇----

这篇文章属于计算机视觉和人工智能领域。

文章名称

Visual WetlandBirds Dataset: Bird Species Identification and Behavior Recognition in Videos

🔍 关键词: 计算机视觉, 机器学习, 动物监测, 生物多样性保护
链接1

摘要: 本文介绍了一个专门针对湿地鸟类的视频数据集, 包含13个鸟类物种以及7种不同的行为动作。该数据集旨在促进基于深度学习的鸟类行为识别和物种分类算法的发展, 以支持生物多样性保护决策。作者还在文章中给出了使用先进模型在这两个任务上的基准结果。

总结: 这是一个为鸟类行为识别和物种分类开发深度学习模型而设计的新型视频数据集。

###【arXiv编号: 2501.08931v1】
###【领域: 计算机视觉, 人工智能】

[推荐指数: 4]

推荐理由

该数据集填补了鸟类行为视频注释的空白, 为鸟类监测和生物多样性保护相关的深度学习算法提供了重要支撑。数据集内容丰富,标注详细,有望推动相关领域的技术创新与应用发展。

—第16篇----

文章名称

🔍 关键词: Exploration, Large Language Models, Exploitation, Optimal Achievable Return
链接1

摘要: 本文探讨了大型语言模型在探索状态空间方面的能力。与现有的侧重于探索和开发之间的权衡的评估不同, 本文将探索作为主要目标, 要求代理人提供增强未来收益的信息。作者提出了一种分解缺失奖励的方法, 以测量已经探索过的状态的最优可实现收益。实验结果显示, 大多数模型难以充分探索状态空间, 弱探索是不够的。作者观察到模型大小与探索性能之间存在正相关关系, 较大的模型表现更出色。此外, 作者证明了分解方法可以提供关于提示工程期间代理指令引起的行为差异的洞见, 这为改善大型语言模型在探索任务中的性能提供了有价值的工具。

总结: 本文提出了一种评估大型语言模型探索能力的新方法, 发现大型模型在探索状态空间方面表现优于小型模型, 同时也提供了一种分解探索和开发因素的有价值的工具。

###【arXiv编号】2501.08925v1
###【领域】计算机科学, 机器学习, 自然语言处理

[推荐指数:4]

推荐理由

该论文针对大型语言模型在探索能力方面的问题提出了创新性的评估方法, 为进一步改进大型语言模型在探索任务中的性能提供了有价值的洞见。作者的实验结果表明, 模型大小与探索性能正相关, 这为今后的模型设计和优化提供了重要指引。此外, 作者提出的分解方法也为分析探索和开发行为提供了有价值的工具。总的来说,这篇论文在机器学习和自然语言处理领域具有较高的创新性和应用潜力。

—第17篇----

文章名称

Modeling Melt Pool Features and Spatter Using Symbolic Regression and Machine Learning

🔍 关键词: cs.LG, cs.AI
arxiv链接

摘要: 本研究开发了一个框架,通过机器学习(ML)和多项式符号回归模型,支持增材制造(AM)操作中的决策制定,促进质量控制并最小化缺陷。我们实施了经实验验证的计算工具,作为一种成本效益的方法来收集来自激光粉末床熔融(LPBF)过程的大型数据集。对于由281个工艺条件组成的数据集,提取了熔池尺寸(长度、宽度、深度)、熔池几何形状(面积、体积)和被指示为飞溅的体积等参数。使用机器学习和多项式符号回归模型,在以工艺条件(功率和速度)或熔池尺寸为模型输入时,在预测熔池尺寸和几何特征方面实现了超过95%的高R2值,对于训练和测试数据集都是如此。对于被指示为飞溅的体积,在对模型输入进行对数转换后,R2也有所提高,这些模型输入要么是工艺条件,要么是熔池尺寸。在所研究的ML模型中,ExtraTree模型实现了最高的R2值(96.7%和87.5%)。

总结: 本研究开发了一个基于机器学习和多项式符号回归的框架,用于预测增材制造过程中的熔池特征和飞溅,为提高工艺质量控制和最小化缺陷提供依据。

###【arXiv编号: 2501.08922】

【领域: 计算机科学-机器学习、人工智能】

[推荐指数:4]

推荐理由

该文章采用机器学习和多项式符号回归的方法,成功预测了增材制造过程中熔池特征和飞溅,为提高增材制造工艺质量控制和最小化缺陷提供了有价值的方法和依据。相关的计算模型能有效降低成本,为应用领域提供实用性支撑,是一项值得关注和推广的研究成果。

—第18篇----

文章名称

🔍 关键词: 离线强化学习,期望回归,支持约束
链接1

摘要: 该文提出了 Proj-IQL 算法,该算法在隐式 Q 学习 (IQL) 的基础上增加了投影和支持约束,以解决离线强化学习中的外分布动作带来的外推误差问题。Proj-IQL 在策略评估阶段采用多步投影方法,在策略改进阶段引入支持约束,从理论上证明了算法可以保证单调策略改进,并具有更加严格的最优动作选择标准。实验结果表明,Proj-IQL 在 D4RL 基准测试中,特别是在导航任务这样的困难领域,达到了最先进的性能。
总结: 该文提出了一种结合投影和支持约束的离线强化学习算法 Proj-IQL,在理论和实践上都展现了优秀的性能。
###【arXiv编号】2501.08907v1
###【领域】计算机科学,人工智能,强化学习

[推荐指数:4]

推荐理由

该文提出了一种创新性强的离线强化学习算法,通过投影和支持约束有效解决了外分布动作导致的外推误差问题,在理论分析和实验测试中都取得了出色的结果,对于离线强化学习领域的发展有重要意义。

—第19篇----

论文名称

🔍 关键词: computing game symmetries, game equilibria, graph automorphisms, PPAD-completeness, CLS-completeness
链接1

摘要: 该论文研究了在具有对称性的多智能体系统中识别和利用对称性的计算复杂度问题。使用标准形式博弈作为框架,研究了玩家和/或行动可能存在的对称性。发现游戏对称性与图自同构存在密切联系,导致图自同构和图同构问题的完全性结果。然而,当仅限制对某些行动的考虑时,问题也可以在多项式时间内求解。接下来,作者研究了在何种条件下可以成功利用对称性来计算纳什均衡。结果表明,在一般和团队博弈中,找到尊重给定对称性的纳什均衡是PPAD和CLS完全的,与布劳威固定点和梯度下降问题一样困难。最后,作者提出了针对特殊情况的多项式时间方法,包括已知大量对称性或两人零和博弈而无需知道对称性的情况。
总结: 该论文研究了在多智能体博弈系统中识别和利用对称性的计算复杂度问题,为寻找符合对称性的纳什均衡提供了理论分析。

###【arXiv编号:2501.08905】
###【git】
###【期刊】
###【领域】: 计算机科学 - 博弈论、人工智能

[推荐指数:4]

推荐理由

该论文深入研究了游戏对称性的计算复杂度问题,并将其与图自同构、PPAD-completeness和CLS-completeness等重要概念联系起来,从理论上阐明了利用对称性求解纳什均衡的困难。论文提出了针对特殊情况的多项式时间算法,为进一步探索利用对称性提高博弈分析效率提供了有价值的理论基础。整体来说,该论文在计算复杂性、博弈论等领域都有重要贡献,是值得关注的高水平研究成果。

—第20篇----

文章名称

Leveraging Large Language Models as Knowledge-Driven Agents for Reliable Retrosynthesis Planning

🔍 关键词: cs.AI
[http://arxiv.org/pdf/2501.08897v1]

摘要: 文章提出了一种将大型语言模型(LLMs)和知识图谱(KGs)集成的智能体系统,以自动化检索相关文献、提取反应数据、查询数据库、构建逆合成路径树、通过检索额外文献进一步拓展,并推荐最优反应路径。该系统通过LLMs强大的化学物质名称提取和识别能力,将提取的数据存储在结构化的知识图谱中。此外,文章还提出了一种多分支反应路径搜索(MBRPS)算法,能够探索所有路径,尤其关注多分支路径,帮助LLMs克服在多分支路径推理能力较弱的问题。这项工作是首次尝试开发针对大分子的完全自动化逆合成规划智能体,并应用于聚酰亚胺合成,构建了包含数百条路径的逆合成路径树,推荐了既有和全新的优化路径,证明了该方法的有效性和广泛应用前景。

总结: 文章提出了一种将大型语言模型和知识图谱融合的自动化逆合成规划智能体系统,应用于聚酰亚胺合成,构建了包含多条优化路径的逆合成路径树。

[arXiv:2501.08897]

[无]

[无]

【材料化学,聚合物科学,化学合成,逆合成规划】

[4]

推荐理由

该文章提出了一种全新的基于大型语言模型的自动化逆合成规划系统,在聚酰亚胺合成应用中展现了很好的性能,能够自动构建包含多条优化路径的逆合成路径树,为复杂大分子的化学合成带来了很大便利。该方法具有很强的创新性和实用性,值得进一步研究和应用。

—第21篇----

文章名称

🔍 关键词: Karatsuba Matrix Multiplication, custom hardware
链接1

摘要: 虽然Karatsuba算法降低了大整数乘法的复杂度,但额外的加法运算使其在较小整数以及常用位宽中的优势降低。在本文中,我们提出了将标量Karatsuba乘法算法扩展到矩阵乘法,展示了这种方式如何在降低额外加法运算复杂度的同时维持原Karatsuba算法的乘法复杂度降低优势。此外,我们还提出了新的矩阵乘法硬件架构,能够有效利用这种Karatsuba算法扩展在定制硬件中的优势。我们发现,与标量Karatsuba或常规矩阵乘法算法相比,所提出的算法和硬件架构能够为整数矩阵乘法带来实际的面积或执行时间改善,同时还支持通过公认的systolic阵列和常规乘法器架构进行实现。我们对该算法和架构进行了复杂度分析,并将其与基线设计和先前最先进的工作在相同类型的计算平台上进行了评估,证明了它们增加矩阵乘法硬件性能密度的能力。

总结: 本文提出了一种利用Karatsuba算法进行矩阵乘法的新方法,并设计了相应的高效定制硬件架构,可以实现整数矩阵乘法的面积或执行时间的改善。

###【arXiv编号】2501.08889
###【git】
###【期刊】
###【领域】计算机体系结构, 人工智能, 性能分析

[推荐指数:5]

推荐理由

该文章提出了一种创新性的Karatsuba矩阵乘法算法及其高效的定制硬件实现方案,在减少乘法复杂度的同时降低了额外加法运算的复杂度,对于需要高性能矩阵乘法的应用如深度学习加速器等具有重要意义。该方案经过复杂度分析和实验评估,证明了其性能密度优势,值得进一步研究和应用。

—第22篇----

论文信息

🔍 关键词: Continual Learning, Multi-Domain, Dynamic Expansion, Knowledge Transfer
链接1

摘要: 本文提出了一种新的多源动态扩展模型(MSDEM),该模型能够利用各种预训练模型作为骨干,并逐步建立新的专家来适应emerging任务。此外,作者还提出了一种创新的动态可扩展注意机制,旨在选择性地利用多个骨干的知识,从而加快新任务的学习。此外,作者还引入了一种动态图权重路由器,战略性地重复使用所有先前获得的参数和表示来学习新任务,最大化正向知识传递效果,从而进一步提高泛化性能。实验结果表明,所提出的方法达到了最先进的性能。

总结: 该论文提出了一种多源动态扩展模型,能够有效地利用多个预训练模型的知识,实现对多源异构数据的增量学习。

###【arXiv编号】2501.08878v1
###【无】
###【无】
###【机器学习,增量学习,多源学习】

[4]

推荐理由

该论文提出了一种创新性的多源动态扩展模型,可以有效解决多源异构数据的增量学习问题。MSDEM通过利用预训练模型作为backbone,并动态建立新的专家模块来适应emerging任务,同时采用动态注意机制和图权重路由器提高知识迁移效果,实现了在多源数据上的高效增量学习。该方法在实验中取得了优秀的性能,值得推荐。

—第23篇----

文章名称

Integrated Push-and-Pull Update Model for Goal-Oriented Effective Communication

🔍 关键词: cs.IT, cs.AI, cs.MA, cs.NI, math.IT
链接1

摘要: 本文研究了面向目标的有效通信的决策制定。我们考虑一个端到端的状态更新系统,其中感知代理(SA)观察源,生成并传输更新到执行代理(AA),而AA采取行动来完成终点的目标。我们集成了基于推送和拉取的更新通信模型,得到了一个推拉结合的模型,该模型允许SA的传输控制器决定将更新推送到AA,同时AA的查询控制器可以通过在特定时间实例提出查询来拉取更新。为了评估有效性,我们利用包含更新的新鲜度、有用性和行动及时性等定性属性的有效性等级(GoE)度量。然后,我们推导出面向效果的策略,以最大化更新有效性的预期折现和,同时受到诱发成本的约束。SA上的面向效果策略考虑了在终点处传达的更新的潜在效果,而在AA上,它考虑了源的概率演化和生成更新的重要性。我们的结果表明,所提出的推拉结合模型在效率和有效性方面都优于仅基于推送或拉取的更新模型。此外,在两个代理上都使用面向效果的策略相比于在任一代理上使用周期性和/或面向效果无关的策略可以提高有效性。

总结: 该文章提出了一种集成推送和拉取更新通信模型,在保证更新新鲜度、有用性和及时性的同时,通过采用面向效果的策略来最大化更新的整体有效性。

###【arXiv编号】2407.14092
###【领域】计算机科学, 通信

[推荐指数:4]

推荐理由

该文章在通信系统设计和优化决策方面提出了创新性的方法,在提高通信效率和效果方面具有较强的实用价值,值得进一步关注和学习。

—第24篇----

文章名称

Silent Abandonment in Text-Based Contact Centers: Identifying, Quantifying, and Mitigating its Operational Impacts

🔍 关键词: cs.SI, cs.AI
链接1

摘要: 论文研究了文本交流式客户服务中的"静默弃用"问题,即客户在未通知系统的情况下离开服务,这会浪费客服人员时间,并导致客户需求状态模糊。论文通过构建分类模型,测量了17家公司3%-70%的客户都是静默弃用。在一项研究中,71.3%的弃用客户是静默弃用,这降低了3.2%的客户服务效率和15.3%的系统容量,每位客服人员每年会产生5,457美元的成本。论文提出了一种期望最大化算法,可以在不确定性下估计客户忍耐时间,并确定影响因素。论文建议公司使用分类模型来估算弃用范围,并使用该算法评估忍耐时间。为了降低静默弃用的影响,论文提出了一些具体的操作策略,如允许客户在排队时进行交流,这虽然会带来数据缺失挑战,但也能显著增加客户忍耐度和缩短服务时间,从而降低弃用率和人员需求。

总结: 该论文探索了文本交流式客户服务中的"静默弃用"问题,量化了其影响,并提出了基于算法和服务设计优化的缓解策略。

[arxiv:2501.08869]

[git]

[期刊]

【领域】客户服务、人工智能、社会计算

[推荐指数:4]

推荐理由

该论文深入分析了文本交流式客户服务中的一个重要痛点问题 - “静默弃用”,量化了其对运营影响,并提出了基于算法和服务设计的优化策略,具有较强的创新性和实用性。论文研究全面,方法严谨,结果可靠,对于提高文本交流式客户服务质量和效率具有重要参考价值。

—第25篇----

文章信息

🔍 关键词: human mobility prediction, long-tail problem, point-of-interest
链接1

摘要: 随着基于位置的服务的流行,人类移动性预测在增强个性化导航、优化推荐系统以及促进城市移动和规划中扮演着关键角色。这涉及到利用用户过去的访问历史来预测下一个用户访问的兴趣点(POI)。然而,访问在时间和空间上的不均衡分布,即空间分布中的长尾问题,使得AI模型很难预测那些人类较少访问的POI。为了解决这个问题,我们提出了长尾调整的下一个POI预测(LoTNext)框架,结合了长尾图调整模块来减少用户-POI交互图中长尾节点的影响,以及一种新颖的长尾损失调整模块来通过逻辑分数和样本权重调整策略来调整损失。同时,我们还采用了辅助预测任务来增强泛化能力和准确性。我们在两个真实世界的轨迹数据集上的实验表明,LoTNext显著超越了现有的最先进的工作。

总结: 提出了一种LoTNext框架,通过长尾图调整和长尾损失调整,并利用辅助预测任务来显著提高人类移动性预测的性能,尤其是针对长尾POI的预测。

###【arXiv编号】2410.14970v4
###【git】
###【期刊】
###【领域】计算机,人工智能,行为建模

[推荐指数:5]

推荐理由

这篇文章提出了一种新颖的人类移动性预测框架LoTNext,通过创新性的模块设计和损失函数调整,有效地解决了长尾POI预测的难题,显著提高了整体预测性能。该工作具有较强的创新性和实用价值,适合推荐给相关领域的研究人员参考。

—第26篇----

根据给定的文章信息,我为您总结如下:

The Surprising Ineffectiveness of Pre-Trained Visual Representations for Model-Based Reinforcement Learning

🔍 关键词: pre-trained visual representations, model-based reinforcement learning, sample efficiency, generalization
链接1

摘要: 视觉强化学习(VRL)方法通常需要大量数据。与无模型RL相反,基于模型的RL(MBRL)通过规划提供了更高效的数据利用。此外,RL缺乏对现实世界任务的泛化能力。之前的工作表明,结合预训练的视觉表示(PVR)可以提高采样效率和泛化能力。虽然PVR在无模型RL中得到了广泛研究,但它们在MBRL中的潜力仍然未被充分探索。在这项工作中,我们在具有挑战性的控制任务中对一组PVR进行了基准测试。我们研究了数据效率、泛化能力以及PVR不同属性对基于模型的代理性能的影响。令人惊讶的是,我们的结果表明,对于MBRL,当前的PVR并不比从头开始学习表示更采样高效,也不能更好地泛化到分布外(OOD)情况。为了解释这一点,我们分析了训练的动力学模型的质量。此外,我们发现数据多样性和网络架构是OOD泛化性能最重要的贡献因素。

总结: 这篇论文发现,在基于模型的强化学习中,当前的预训练视觉表示无法提高采样效率和泛化性能,反而不如从头学习表示。

###【arXiv编号】2411.10175v2
###【git】-
###【期刊】-
###【领域】强化学习、模型学习、视觉表示

[推荐指数:3]

推荐理由

这篇论文提出了一个有趣且令人意外的发现,即现有的预训练视觉表示在基于模型的强化学习中并不能带来预期的优势。该发现挑战了之前的研究结果,对于深入理解模型学习和视觉表示在强化学习中的作用具有重要意义。但由于还缺乏对结果原因的深入分析,以及对于如何设计更加有效的视觉表示的建议,因此该工作的影响力评分相对较低。

—第27篇----

文章名称

🔍 关键词: ARMOR, 数据隐私, 神经网络,数据增强
链接1

摘要: 本文提出了一种名为 ARMOR 的框架,用于保护数据隐私免受数据增强技术的影响。该框架通过设计一个非局部模块辅助的代理模型来更好地捕捉数据增强的效果,并提出了一种代理增强选择策略和动态步长调整算法来增强防御性噪声的生成过程。实验结果表明,ARMOR 在4个数据集和5种数据增强方法下都能有效地保护未学习的私有数据。与现有的6种防御方法相比,ARMOR 可将增强的受保护样本上的测试准确率降低最多60%。
总结: ARMOR 框架能有效防御数据增强对未学习示例的隐私破坏。
###【arXiv编号: 2501.08862】
###【领域: 机器学习, 计算机安全】

[推荐指数: 5]

推荐理由

该文章提出了一种名为ARMOR的框架,解决了数据增强技术对未学习示例造成的数据隐私问题,提出了多种创新性的技术手段来实现防御,实验结果表明ARMOR能有效保护隐私,具有较高的创新性和实用价值。

—第28篇----

文章信息

🔍 关键词: Digital Phenotyping, Machine Learning, Mental Health, Adolescents, Smartphone Data
http://arxiv.org/pdf/2501.08851v1

摘要: 该研究利用Mindcraft应用程序收集青少年的主动和被动智能手机数据,结合机器学习技术,评估预测青少年心理健康风险的可行性。研究发现集成主动和被动数据可以获得更好的预测性能,达到平衡准确率0.71-0.77的水平,可以预测内化障碍、外化障碍、进食障碍、失眠和自杀意念等。该研究展示了结合主动和被动智能手机数据以及先进机器学习技术预测青少年心理健康风险的潜力。
总结: 利用Mindcraft应用收集青少年主动和被动智能手机数据,结合机器学习技术可以预测青少年的内化障碍、外化障碍、进食障碍、失眠和自杀意念等心理健康风险。
###【arXiv:2501.08851v1】
###【领域: 计算机科学, 人工智能】

[推荐指数:4]

推荐理由

该研究提出了一种利用智能手机数据和机器学习预测青少年心理健康风险的创新方法,具有很强的应用前景。研究方法严谨,结果显示了较高的预测性能,对于帮助识别和早期干预青少年心理健康问题具有重要意义。

—第29篇----

Graph Counterfactual Explainable AI via Latent Space Traversal

🔍 关键词: Graph, Counterfactual Explanations, Variational Autoencoder, Graph Classifier
http://arxiv.org/pdf/2501.08850v1

摘要: 本文提出了一种方法,利用一个特定的置换等变图像编码器-解码器模型,生成可微分黑盒图分类器的对比性解释。该方法通过在编码器的隐空间中进行遍历来生成对比性解释,从而实现了离散图结构和连续图属性的无缝集成。作者在三个图数据集上进行了经验验证,结果表明该模型性能优秀,且比基准模型更加鲁棒。总之, 该方法能为图分类任务提供可解释的人工智能。

总结: 本文提出了一种基于对比性解释的可解释图分类器,利用置换等变的编码-解码器模型在隐空间中进行遍历来生成对比性解释,适用于各种可微分的图分类器。

###【arXiv编号】2501.08850
###【领域】机器学习、人工智能、图神经网络

[推荐指数:4]

推荐理由

该论文在图分类任务的可解释性方向做出了创新性贡献,提出了一种置换等变的编码-解码器框架用于生成高质量的对比性解释,对于开发可解释的图神经网络模型有重要价值。该方法在三个公开数据集上的性能也得到了充分验证,可以认为是一种前景广阔的可解释AI技术。

—第30篇----

文章名称

RouteNet-Gauss: Hardware-Enhanced Network Modeling with Machine Learning

🔍 关键词: cs.NI, cs.AI, cs.LG
[http://arxiv.org/pdf/2501.08848v1]

摘要: 本文提出了RouteNet-Gauss, 这是一种利用机器学习和硬件加速的网络模拟方法。通过将实际网络测试平台作为加速器,RouteNet-Gauss能够快速生成训练数据集并模拟接近真实网络条件的场景。实验结果显示,与传统的离散事件模拟方法相比,RouteNet-Gauss能够将预测误差降低高达95%,同时推理速度提高488倍。RouteNet-Gauss的模块化架构可根据网络拓扑和路由等特点动态构建,并能推广应用于10倍大的网络。此外,它支持可配置的时间粒度的网络性能估计,在流量性能指标方面保持了高精度。这种方法有望在提高仿真效率和准确性方面提供宝贵的工具。

总结: RouteNet-Gauss是一种利用机器学习和硬件加速的新型网络模拟技术,能够大幅提高仿真效率和准确性。

###【arXiv编号: 2501.08848】
###【期刊: -】
###【领域: 计算机网络、人工智能、机器学习】

[推荐指数:5]

推荐理由

该文章提出了一种创新性的网络模拟方法,集成了硬件加速和机器学习技术,在仿真效率和准确性方面显著优于传统方法。该方法具有良好的推广性,能支持不同网络拓扑和路由算法,同时还兼顾了网络流量性能的时间粒度。这种跨领域的创新可为计算机网络建模和性能预测等关键问题提供有价值的工具。

—第31篇----

👨‍🏫 这篇论文属于计算机和通信领域,主要研究如何使用元启发式算法自动调优车载自组网(VANET)的通信协议。

摘要:文章探讨了如何配置文件传输协议(FTC),以优化VANET场景下的传输时间、丢包数和数据传输量。作者使用了5种代表性的优化算法(PSO、DE、GA、ES、SA)进行测试比较,结果表明PSO算法在城市和高速公路两种典型VANET场景下都优于其他算法。

总结: 本文提出了一种基于元启发式算法的VANET通信协议自动调优方法,能够显著提升VANET网络性能。

[arXiv:2501.08847]

[Git链接]

[发表于期刊]

领域: 计算机网络、智能交通

[推荐指数: 4]

推荐理由:

该文提出的自动调优方法新颖且实用性强,能有效优化VANET通信协议性能,为未来智能交通系统发展提供重要技术支撑。方法学设计合理,实验设置和结果分析充分,具有很好的创新性和技术价值。

—第32篇----

文章名称

🔍 关键词: Task-Level Optimal Prompts, Visual In-Context Learning, Vision Foundation Models, Prompt Search
链接1

摘要: 本文探讨了如何为视觉基础模型(VFM) 找到任务级别的最优提示(prompt),以实现高效的视觉上下文学习(VICL)。与逐样本寻找最优提示相比,本文发现大部分样本都可以在同一个提示下达到最优性能,因此提出了任务级别的提示优化策略,不仅可以大幅降低计算成本,还能保持最佳的VICL性能。

[arxiv:2501.08841]

领域: 计算机视觉, 人工智能

[推荐指数:5]

推荐理由

这篇文章针对VICL过程中的提示优化问题提出了创新性的解决方案,不仅在性能上达到了最优,而且大幅降低了计算成本。该方法为实际部署VICL系统带来了显著优势,具有很强的实用价值。

—第33篇----

好的,我已经仔细阅读了您提供的这篇文章信息。

ToMATO: Verbalizing the Mental States of Role-Playing LLMs for Benchmarking Theory of Mind

🔍 关键词: Theory of Mind, Language Models, Benchmarking
arxiv 链接

摘要: 现有的Theory of Mind (ToM)基准测试与现实世界场景存在三个方面的差异:1)它们只评估了有限范围的心理状态,如信念;2)对虚假信念的探索不够全面;3)忽略了角色的多样性人格特征。为了解决这些挑战,我们提出了ToMATO,这是一个新的基于对话的多选问答ToM基准。ToMATO是通过具有信息不对称的LLM-LLM对话生成的。通过采用要求扮演角色的LLM在每次发言前阐述自己的想法的提示方法,我们捕捉了包括信念、意图、欲望、情绪和知识在内的一阶和二阶心理状态。这些言语化的想法作为问题的答案,用于评估对话中角色的心理状态。此外,通过隐藏某些人物的想法,产生了关于各种心理状态的虚假信念。给LLM分配不同的人格特征,进一步丰富了言语和想法的多样性。ToMATO包含5.4k个问题,753个对话和15种人格特征模式。我们的分析结果表明,这种数据构建方法频繁生成由于信息不对称而导致的虚假信念,并有效反映了多样的人格特征。我们评估了9个LLM在ToMATO上的表现,发现即使是GPT-4 mini也落后于人类表现,特别是在理解虚假信念和对不同人格特征的鲁棒性方面。

总结: ToMATO是一个新的Theory of Mind基准测试,通过LLM之间的角色扮演对话捕捉不同类型的心理状态,包括虚假信念以及多样化的人格特征,为评测语言模型的认知能力提供了新的途径。

[arXiv 编号: 2501.08838]

[领域: 自然语言处理, 人工智能]

[推荐指数: 4]

推荐理由

该研究提出了一个创新性的基于角色扮演的Theory of Mind基准测试ToMATO,能够全面地评估语言模型在捕捉各类心理状态,包括虚假信念等方面的能力,体现了对现有基准的深入反思和创新。所提出的方法具有较强的实用性,有助于推动语言模型在认知能力方面的发展。此外,该文章分析全面,实验结果有明确的洞见,整体质量较高,值得关注和借鉴。

—第34篇----

MMDocIR: Benchmarking Multi-Modal Retrieval for Long Documents

🔍 关键词: Multi-Modal Document Retrieval, Layout Retrieval, Benchmark
[http://arxiv.org/pdf/2501.08828v1]

摘要: 本文介绍了一个新的基准测试集MMDocIR,用于评估多模态文档检索系统的性能。MMDocIR包含两个任务:页级检索和布局级检索。前者旨在从长文档中定位最相关的页面,后者则针对具体的布局元素进行检索,如文本段落、公式、图表等。该基准测试集包含 1,685 个专家注释的问题和 173,843 个自动生成的问题,为多模态文档检索提供了一个重要的资源。通过实验,作者发现视觉检索器明显优于基于文本的检索器,且利用基于VLM-text的文本检索器性能大幅优于基于OCR-text的检索器,这突出了视觉元素在多模态文档检索中的重要作用。

总结: 本文提出了一个新的多模态文档检索基准测试集MMDocIR,评估了不同检索方法的性能,发现视觉检索优于纯文本检索,可以为该领域的进一步发展提供有价值的实验结果和数据资源。

###【arXiv编号:2501.08828】
###【无git信息】###【无期刊信息】

领域: 计算机视觉、自然语言处理、多模态检索

[推荐指数:4]

推荐理由

该论文提出了一个针对多模态文档检索的全新基准测试集,覆盖页级和布局级的检索任务,为这个重要的研究领域提供了有价值的数据支撑。通过实验分析,作者得出了有意义的结果,如视觉检索优于纯文本检索,为进一步优化多模态文档检索系统提供了指导。该研究有较强的创新性和实用性,值得关注和借鉴。

—第35篇----

IDEA: Image Description Enhanced CLIP-Adapter

🔍 Keywords: CLIP, few-shot classification, image-text pairs, adapter tuning, textual description
arxiv: 2501.08816v1

摘要: 这篇文章提出了一种 Image Description Enhanced CLIP-Adapter (IDEA) 方法,用于将 CLIP 模型适配到少样本图像分类任务。该方法通过利用图像的视觉特征和文本描述,捕捉更细粒度的特征。IDEA 是一种无需训练的方法,可以与或者超越最先进的模型在多个任务上的性能。此外,文章还提出了 Trainable-IDEA (T-IDEA),通过添加两个轻量级可学习组件(投影器和可学习潜在空间)进一步增强了模型性能,在11个数据集上取得了最先进的结果。作者还使用 Llama 模型生成了11个数据集的文本描述,构建了包含1,637,795个图像-文本对的 “IMD-11” 数据集,这是一个重要贡献。

总结: 文章提出了利用图像文本描述增强 CLIP 模型的适配方法 IDEA 和 T-IDEA,在少样本图像分类等任务上取得了较好的性能。

[arXiv: 2501.08816]

[git: https://github.com/FourierAI/IDEA]

领域: 计算机视觉、机器学习

[推荐指数: 4]

推荐理由

该文章在少样本图像分类问题上取得了较好的性能,突出了利用图像文本描述信息来增强 CLIP 模型的有效性。方法简单且无需训练,值得在相关领域进行尝试和应用。

—第36篇----

文章名称

SAIF: A Comprehensive Framework for Evaluating the Risks of Generative AI in the Public Sector

🔍 关键词: cs.AI, cs.CL, cs.CY
链接1

摘要: 这篇文章探讨了发生在公共部门使用生成式AI时的关键风险。它建立了一个名为SAIF的系统框架,可以评估这些风险并提供应对方案,包括分解风险、设计场景、应用突破方法和探索提示类型等步骤。该框架旨在应对新出现的威胁并确保生成式AI能够安全可靠地融入公共部门。

总结: 提出了一个全面评估公共部门生成式AI风险的框架SAIF,以确保安全可靠地将这项技术应用到公共服务中。

###【arXiv编号】2501.08814v1
###【领域】计算机科学, 人工智能, 自然语言处理, 网络安全

[推荐指数:4]

推荐理由

这个框架提出了一种系统的方法来评估公共部门使用生成式AI的潜在风险,具有很强的创新性和实用性。该框架涵盖了从提取风险到设计应对场景的全过程,为生成式AI在公共服务中的安全使用提供了重要的理论指导。同时,该框架还具有良好的可扩展性,能适应新出现的威胁挑战,体现了很好的前瞻性。总的来说,这个框架对于确保公共部门中生成式AI的安全应用具有重要意义。

—第37篇----

XMusic: Towards a Generalized and Controllable Symbolic Music Generation Framework

🔍 关键词: symbolic music generation, emotion control, quality assessment
arxiv.org/pdf/2501.08809v1

摘要: 该论文提出了一个名为 XMusic 的通用的可控的符号音乐生成框架。XMusic 由两个核心组件 XProjector 和 XComposer 组成。XProjector 解析各种形式的提示(如图像、视频、文本、标签和哼唱)并将其转化为符号音乐元素(情感、流派、节奏和音符)。XComposer 包含一个生成器和一个选择器,生成器生成可控情感和优质的符号音乐,选择器通过多任务学习(质量评估、情感识别和流派识别)来识别高质量的符号音乐。此外,作者还构建了一个大规模的符号音乐数据集 XMIDI。实验结果表明,XMusic 在音乐质量方面显著优于当前最先进的方法,并被评为2023年WAIC会议的九大亮点之一。

总结: XMusic 是一个可以通过灵活的提示生成高质量和可控情感的符号音乐的通用框架。

###【arXiv:2501.08809】
###【无】
###【无】
###【音乐合成、人工智能、音频处理】

[推荐指数:5]

推荐理由

XMusic 是一个优秀的符号音乐生成框架,在生成高质量、可控情感的音乐方面表现出色,并且具有良好的通用性和可扩展性。该框架在人工智能音乐生成领域具有重大创新意义,值得进一步研究和应用。

—第38篇----

Learning Optimal Tax Design in Nonatomic Congestion Games

🔍 关键词: cs.GT, cs.AI, cs.LG, cs.MA
http://arxiv.org/pdf/2402.07437v2

摘要: 在多玩家游戏中,参与者之间的自利行为可能会损害社会福利。税收机制是一种常见的缓解这一问题并诱导社会最优行为的方法。在这项工作中,我们采取了学习可以在有限反馈的拥挤游戏中最大化社会福利的最佳税收的第一步。我们提出了一种名为"平衡反馈"的新型反馈,其中税收设计者只能在部署税收计划后观察到纳什均衡。由于税收函数空间巨大、梯度不存在以及目标函数非凸,现有算法无法适用。为了应对这些挑战,我们设计了一种计算效率高的算法,利用了几个新颖的组件:(1)分段线性税收来近似最优税收;(2)额外的线性项来保证强凸的潜力函数;(3)一种高效的子程序来找到可提供关键信息的探索性税收。该算法可以找到一个ε-optimal税收,其样本复杂度为O(βF^2/ε),其中β是成本函数的光滑性,F是设施数量。

总结: 该论文提出了一种计算效率高的算法,利用分段线性税收、强凸潜力函数和高效探索性子程序,在有限反馈的拥挤游戏中学习可最大化社会福利的最佳税收。

###【arXiv编号:2402.07437v2】
###【领域:计算机科学、博弈论、机器学习】

[推荐指数:4]

推荐理由

该论文在拥挤游戏中学习最优税收设计方面做出了创新性贡献,在计算效率、数学理论分析等方面都有出色的成果,对社会优化决策和资源配置有重要应用价值。

—第39篇----

Evaluation of Artificial Intelligence Methods for Lead Time Prediction in Non-Cycled Areas of Automotive Production

🔍 Keywords: Lead time prediction, automotive production, machine learning, non-cycled areas
arXiv:2501.07317

摘要: 这项研究探讨了在汽车生产环境中应用人工智能方法来预测非循环控制生产区域中未知的交货时间的有效性。 对数据结构进行分析以识别上下文特征,然后使用one-hot编码进行预处理。 方法选择集中在监督机器学习技术上。 在监督学习方法中,评估回归和分类方法。 基于目标大小分布的连续回归不可行。 分类方法分析表明,集成学习和支持向量机是最合适的。 初步研究结果表明,梯度提升算法LightGBM、XGBoost和CatBoost产生最佳结果。 经过进一步测试和广泛的超参数优化后,最终选择了LightGBM算法。 根据特征可用性和预测间隔粒度,可以实现高达90%的相对预测准确性。 进一步的测试突出了定期重新训练AI模型的重要性,以准确地表示使用数据库的复杂生产过程。 该研究表明,AI方法可以有效地应用于高度可变的生产数据,通过提供各种控制任务的额外指标来增加业务价值,并超越当前非AI系统。

总结: 这篇文章介绍了在汽车非循环生产区域应用人工智能技术预测交货时间的方法论,通过对数据集的分析、比较不同的监督机器学习算法,最终确定LightGBM为最优方案,能够在90%的准确性下预测交货时间,对生产管理有明显的业务价值。

[Git/arxiv]

[期刊]

【领域】 计算机、智慧制造

[推荐指数:4]

推荐理由

这篇论文针对汽车生产这一复杂的非循环领域成功应用了人工智能技术,在预测交货时间方面取得了高达90%的准确率,对提高生产效率和降低运营成本具有重要意义。该方法具有一定的创新性和实用性,值得进一步研究和应用。

—第40篇----

文章名称

Constrained Latent Action Policies for Model-Based Offline Reinforcement Learning

🔍 关键词: cs.LG, cs.AI
链接1

摘要: 在离线强化学习中,使用静态数据集学习策略,而不需要从环境中获取反馈。与在线设置相比,仅使用静态数据集会带来额外的挑战,例如策略生成的样本可能会偏离训练分布。基于模型的离线强化学习方法试图通过学习环境的底层动力学模型并使用它来指导策略搜索来克服这些问题。这样做是有益的,但是如果数据集有限,模型错误和分布外状态的价值过高会降低性能。当前的基于模型的方法应用了某种保守性的Bellman更新,通常通过使用模型集合估计的不确定性来实现。在本文中,我们提出了受约束的潜在行动策略(C-LAP),它学习观察和动作的联合分布的生成模型。我们将策略学习定义为一个受约束的目标,以保持在潜在动作分布的支持范围内,并利用模型的生成能力来施加对生成动作的隐式约束。从而消除了需要在Bellman更新中使用额外的不确定性惩罚,并显著减少了学习策略所需的梯度步骤。我们在D4RL和V-D4RL基准上经验评估了C-LAP,并发现C-LAP与最先进的方法竞争,特别是在具有视觉观察的数据集上表现优于其他方法。

总结: 提出了一种基于受约束的潜在行动分布的离线强化学习方法,与最新方法相比具有一定优势。

###【arXiv编号】2411.04562v2
###【git】
###【期刊】
###【领域】机器学习,强化学习

[推荐指数:4]

推荐理由

该文章提出了一种新的离线强化学习方法C-LAP,通过学习观察和动作的联合分布模型,并将政策学习定义为一个受约束的目标,从而克服了基于模型的离线强化学习中存在的一些问题。实验结果显示该方法在基准测试上表现优秀,特别是在具有视觉观察的数据集上。作为一篇最新的研究工作,该方法具有较强的创新性和实用性。

—第41篇----

文章名称

🔍 关键词: Networked Agents, Partial Observability, Cooperative Multi-Agent Reinforcement Learning
arxiv

摘要: 文章提出了一种新的合作多智能体强化学习(MARL)方法,适用于网络代理。与依赖完整状态信息或联合观测的先前方法不同,代理必须在部分可观测性下学习如何达到共同目标。在训练期间,他们收集个人奖励并通过本地通信近似团队价值函数,从而产生合作行为。为了描述问题,文章引入了网络动态部分可观测马尔可夫博弈框架,代理通过切换拓扑通信网络进行通信。他们提出的分布式方法DNA-MARL使用共识机制进行本地通信和梯度下降进行本地计算。DNA-MARL扩大了网络代理的应用范围,非常适合施加隐私且消息可能无法送达收件人的真实世界领域。结果显示,DNA-MARL优于先前方法。
总结: 该文提出了一种基于网络代理部分可观测性的合作多智能体强化学习方法,可用于一些隐私性和消息传递可靠性较差的实际应用场景。

[arXiv:2501.08778v1]

[git]

[期刊]

【领域】计算机科学,人工智能,多智能体系统

[推荐指数:4]

推荐理由

该文章提出了一种创新的多智能体强化学习方法,能够在部分可观测性的情况下实现团队合作目标,并且在基准测试中表现出色,拓展了网络代理的应用范围。该方法在隐私敏感和消息传递不可靠的实际场景中具有较好的适用性,值得进一步研究和应用。

—第42篇----

此文章属于计算机科学领域,主要关注开发人员与人工智能工具之间的交互方式。

摘要: 人工智能(AI)包括大型语言模型和生成式AI,正在成为软件开发中的一个重要力量,为开发人员提供了贯穿整个开发生命周期的强大工具。尽管软件工程研究已广泛研究了AI在软件开发中的作用,但开发人员与这些AI驱动工具之间的具体交互类型只是最近才开始受到关注。了解和改善这些交互对于提高AI驱动工作流程的生产力、信任度和效率具有重要意义。本文提出了开发人员与AI工具之间11种不同的交互类型,如自动完成代码建议、基于命令的操作和对话式援助等。在此分类基础上,我们概括了一个研究议程,重点关注优化AI交互、提高开发人员控制力,以及解决AI辅助开发中的信任和可用性挑战。通过建立一个研究开发人员-AI交互的框架,本文旨在推动创造更有效、更适应性强的AI工具。

总结: 本文提出了开发人员与AI工具11种交互类型的分类法,并提出了优化AI交互、提高开发人员控制力,以及解决信任和可用性挑战的研究议程。

【arXiv编号】2501.08774

【领域】计算机科学,软件工程

[推荐指数:5]

推荐理由

该文章以系统的方式研究了开发人员与AI工具的交互方式,为优化AI辅助软件开发提供了重要的理论基础。提出的分类框架具有较强的创新性,并围绕改善开发人员-AI协作提出了可操作的研究议程,对于推动这一领域的进一步发展具有重要意义。

—第43篇----

文章名称

Mind the Error! Detection and Localization of Instruction Errors in Vision-and-Language Navigation

🔍 关键词: Vision-and-Language Navigation, Continuous Environments, Instruction Errors
arxiv链接

摘要: 本文针对Vision-and-Language Navigation in Continuous Environments (VLN-CE)任务提出了一个新的基准数据集,该数据集包含各种类型的指令错误,以反映人类可能造成的错误。作者观察到将最先进的VLN-CE方法应用于此基准数据集时,成功率下降高达25%,表明当前的VLN-CE系统对指令错误并不健壮。为了解决这一问题,作者定义了指令错误检测和定位的任务,并提出了一种基于跨模态transformer的有效方法,在该基准上取得了最佳性能。作者还发现,该方法可以在通常使用的VLN-CE数据集R2R-CE和RxR-CE的验证集上检测出错误,证明了该技术在其他任务中的实用性。

总结: 该文章提出了一个新的VLN-CE基准数据集,包含各种类型的指令错误,评估了现有方法的性能,并提出了一种基于跨模态transformer的指令错误检测和定位方法,在提出的基准数据集上取得了最佳性能。

###【arXiv编号: 2403.10700】
###【无】
###【无】
###【计算机视觉、自然语言处理、机器学习】

[推荐指数:5]

推荐理由

该文章针对Vision-and-Language Navigation任务中的一个重要而实际的问题提出了新的解决方案,并构建了相应的基准数据集。作者提出的方法在检测和定位指令错误方面取得了出色的性能,对于提高VLN-CE任务的鲁棒性具有重要意义。同时,该方法也可以应用于其他任务中,具有较强的通用性。

—第44篇----

文章名称

Leveraging LLM Agents for Translating Network Configurations

🔍 关键词: cs.NI, cs.AI, cs.LG, cs.SE
链接1

摘要: 网络配置翻译是网络运维中一项关键且频繁的任务。当网络设备损坏或过时时,管理员需要更换它以维持服务连续性。更换的设备可能来自不同的供应商,需要进行配置翻译以确保网络操作的无缝衔接。然而,手动翻译配置是一个劳动密集型且容易出错的过程。本文提出了一种基于意图的框架,使用大型语言模型(LLM)代理来翻译网络配置。我们的方法的核心是一个基于意图的检索增强生成(IRAG)模块,该模块系统地将配置文件拆分为片段,提取意图,并生成准确的翻译。我们还设计了一种两阶段验证方法来验证翻译配置的语法和语义正确性。我们在实际网络配置上实施并评估了该方法。实验结果表明,我们的方法实现了97.74%的语法正确性,在翻译准确性方面优于最先进的方法。

总结: 本文提出了一种基于LLM代理的网络配置自动翻译框架,能够提高翻译准确性和效率。

###【arXiv编号: 2501.08760v1】

###【领域: 网络配置、自然语言处理】

[推荐指数: 5]

推荐理由

该文提出了一种创新性的网络配置自动翻译框架,利用LLM代理技术实现了高准确性的翻译,同时也设计了两阶段验证方法确保翻译的语法和语义正确性。该方法在实际网络配置中的评估表现出色,在网络运维自动化和效率提升方面具有较强的实用价值。

—第45篇----

文章名称

Towards a performance characteristic curve for model evaluation: an application in information diffusion prediction

🔍 关键词: information diffusion prediction, social networks, model evaluation
arXiv 论文链接

摘要: 该论文提出了一种基于信息熵的指标来量化扩散数据的随机性,并发现了随机性和预测准确性之间的规律性关系。通过适当调整变量,不同序列长度、系统规模和随机性的数据点都可以折叠到一条曲线上,这条曲线反映了模型在面对增加不确定性时做出正确预测的固有能力,即模型的性能特征曲线。该曲线通过对三个同族预测模型和八个最先进模型的评估得到验证,提供了一种全面、清晰的评估方法,即使是难以用传统指标区分的模型也能进行评估。这项工作揭示了数据随机性和预测准确性之间的内在规律,为未来开发其他模型评估框架提供了启发。

总结: 该论文提出了一种基于性能特征曲线的新型模型评估方法,在信息扩散预测任务中得到验证,可为其他领域的模型评估提供参考。

[推荐指数:4]

推荐理由

该文提出了一种创新的模型评估方法,不仅能全面评估不同复杂度的任务下模型的性能,而且发现了数据随机性和预测准确性之间的内在规律,这为未来模型评估框架的发展提供了新的思路。该方法适用于信息扩散预测等复杂任务,具有较强的实用性。

—第46篇----

文章名称

Unseen Horizons: Unveiling the Real Capability of LLM Code Generation Beyond the Familiar

🔍 关键词: Unseen Horizons, LLM Code Generation, Code Obfuscation, Benchmark
http://arxiv.org/pdf/2412.08109v2

摘要: 这篇论文指出现有的评估LLM代码生成能力的方法可能存在"专家熟悉"的偏见,主要因为目标代码的曝光度、案例时效性和依赖可用性等问题。为解决这一问题,论文提出使用代码混淆的方法构建了一个新的基准测试集OBFUSEVAL,通过对描述、代码和上下文依赖进行三层级的混淆,来评估LLM在未见过的代码生成任务上的性能。实验结果显示,经过混淆后,LLM的测试通过率平均下降62.5%,揭示了当前LLM代码生成能力的真实水平。总结: 该文提出了一种更加真实、客观地评估LLM代码生成能力的新方法。

###【arXiv: 2412.08109v2】
###【领域: 计算机科学,人工智能】

[推荐指数:4]

推荐理由

这篇论文提出了一种创新性的评估LLM代码生成能力的新方法,有助于更加准确地评估当前LLM在实际应用中的性能,为进一步提升LLM的代码生成能力提供了重要依据。所提出的OBFUSEVAL基准测试集也可以作为未来相关研究的重要评估工具。论文研究思路清晰,实验结果有说服力,对计算机科学和人工智能领域都有重要参考价值。

—第47篇----

最大化联邦学习中的不确定性: 基于贝叶斯优化的模型投毒

🔍 关键词: 联邦学习, 模型投毒, 不确定性最大化, 贝叶斯优化
arXiv链接

摘要: 随着从狭义人工智能向人工超级智能的转变,用户越来越关注他们的隐私和机器学习技术的可信度。可信度指标的一个共同点是量化深度学习算法中固有的不确定性,特别是模型参数、输入数据和模型预测中的不确定性。解决深度学习隐私问题的一种常见方法是采用分布式学习,如联邦学习,在此隐私原始数据不会在用户之间共享。尽管联邦学习有隐私保护机制,但它仍然面临可信度的挑战。具体来说,在训练过程中,恶意用户可以系统地创造恶意模型参数,损害模型的预测和生成能力,从而对其可靠性产生高度不确定性。为了证明恶意行为,我们提出了一种新的模型投毒攻击方法Delphi,旨在最大化全局模型输出的不确定性。我们通过利用局部模型第一隐藏层模型参数与不确定性之间的关系来实现这一目标。Delphi 采用两种优化方式,贝叶斯优化和最小二乘信赖域,来搜索最优的投毒模型参数,分别命名为Delphi-BO和Delphi-LSTR。我们使用KL散度来量化不确定性,将预测概率分布最小化到模型输出的不确定分布。此外,我们还为攻击有效性建立了数学证明。数值结果表明,Delphi-BO诱导了比Delphi-LSTR更高的不确定性,突出了联邦学习系统对模型投毒攻击的脆弱性。

总结:该文提出了一种基于贝叶斯优化的模型投毒攻击方法Delphi,旨在最大化联邦学习中的不确定性,突出了联邦学习系统对此类攻击的脆弱性。

[推荐指数:4]

推荐理由

该论文提出了一种创新的模型投毒攻击方法,能够有效地最大化联邦学习系统中的不确定性,说明了联邦学习在保护隐私和可靠性方面仍存在挑战。该方法结合了贝叶斯优化和最小二乘信赖域优化,具有较强的实用性。论文还提供了数学分析,充分验证了攻击的有效性。总体来说,该研究对联邦学习安全性提出了重要启示,具有较高的创新性和实用价值。

—第48篇----

MambaLRP: Explaining Selective State Space Sequence Models

🔍 Keywords: Sequence Modeling, Selective State Space Models, Explainability, Layer-wise Relevance Propagation (LRP)
arxiv.org/pdf/2406.07592v3

摘要: 最近使用选择性状态空间序列模型(称为Mamba模型)的序列建模方法引起了广泛关注。这些模型允许以线性时间有效处理长序列,并迅速被采用于广泛的应用程序中,如语言建模,展现出令人鼓舞的性能。为了在现实场景中可靠地使用它们,增加它们的透明度至关重要。我们的工作通过将可解释性(特别是逐层相关性传播(LRP))引入Mamba架构,来填补这一关键空白。受相关性保持公理的指导,我们确定了Mamba架构中导致不忠实解释的特定组件。为了解决这个问题,我们提出了MambaLRP,这是一种LRP框架下的新算法,确保通过这些组件进行更稳定可靠的相关性传播。我们提出的方法在理论上是健全的,并在广泛的模型和数据集中实现了最先进的解释性能。此外,MambaLRP有利于更深入地检查Mamba架构,揭示各种偏差并评估其重要性,还能分析有关Mamba模型长期能力的先前猜测。

总结: 该论文提出了MambaLRP,一种用于解释选择性状态空间序列模型(Mamba模型)的新算法,能实现更可靠的相关性传播,提高了Mamba模型的可解释性。

###【arXiv: 2406.07592】
###【期刊: 暂无】
###【领域: 机器学习】

[推荐指数: 4]

推荐理由

该论文提出了一种新颖的可解释性方法MambaLRP,能够有效解释基于Mamba模型的序列模型,提高了这类模型在实际应用中的可靠性和透明度。该方法理论上健全,且在多个数据集和模型上表现出色。该工作对推动Mamba模型的广泛应用具有重要意义。

—第49篇----

这篇文章属于计算机、电子等相关领域,其摘要如下:

Sparse Low-Ranked Self-Attention Transformer for Remaining Useful Lifetime Prediction of Optical Fiber Amplifiers

🔍 关键词: Sparse Low-Ranked Self-Attention Transformer, Remaining Useful Lifetime Prediction, Optical Fiber Amplifiers
PDF Link

摘要: 本文提出了一种用于光纤放大器剩余使用寿命预测的Sparse Low-ranked Self-Attention Transformer(SLAT)方法。光纤放大器是当前光纤网络中的关键元件,其故障会给网络运营商造成巨大经济损失。通过应用预测性维护中的剩余使用寿命预测,可以及时预测系统故障,进而采取有针对性的维护措施,确保网络的可靠性和安全性。光纤放大器在不同工作条件下的复杂性使得准确预测十分困难。数据驱动的剩余使用寿命预测方法,尤其是深度学习模型,表现出良好的性能,但基于相对较小的数据集进行泛化仍面临挑战。SLAT采用编码器-解码器架构,其中两个并行工作的编码器分别提取传感器和时间步特征。利用自注意力机制,可以从长时序数据中学习到长期依赖性。同时,SLAT实现了注意力矩阵的稀疏性和低秩参数化,有助于避免过拟合并提高模型的泛化能力。实验结果表明,SLAT在光纤放大器(EDFA)和涡扇发动机基准数据集上都优于现有最先进方法。

总结: SLAT是一种用于光纤放大器剩余使用寿命预测的创新型深度学习模型,通过自注意力机制和参数化设计提高了预测性能和泛化能力。

[arXiv编号: 2409.14378]

[来源: arXiv]

【领域: 计算机、电子】

[推荐指数: 4]

推荐理由

该论文提出了一种高效的剩余使用寿命预测方法SLAT,专门针对光纤放大器这一关键光纤网络设备的故障预测问题。SLAT利用自注意力机制学习长时序特征,同时通过参数化设计提高了模型的泛化能力。实验结果表明SLAT优于现有最先进方法,具有很强的实用价值。论文创新性强,对后续相关研究具有一定的指导意义。

—第50篇----

这篇论文属于计算机视觉和机器学习领域。

摘要: 无监督表示学习已显著推动了各种机器学习任务的发展。在计算机视觉领域,最先进的方法利用随机剪裁和色彩抖动等变换来实现不变表示,将语义上相同的输入嵌入到同一表示空间。然而,这可能会降低需要精确特征的任务(如定位或花朵分类)的性能。为了解决这个问题,最近的研究包含了等变表示学习,捕捉变换敏感的信息。然而,当前的方法依赖于变换标签,因此难以处理相互依赖和复杂变换。我们提出了自监督变换学习(STL),用图像对导出的变换表示取代变换标签。所提出的方法确保变换表示是图像不变的,并学习相应的等变变换,在没有增加批处理复杂度的情况下提高性能。我们证明了该方法在不同的分类和检测任务中的有效性,在11个基准中的7个中优于现有方法,在检测任务中表现尤其出色。通过整合复杂的变换(如AugMix),这种方法增强了跨任务的性能,突出了其适应性和抗压能力。此外,它与各种基础模型兼容,突出了其灵活性和广泛适用性。

总结: 提出了一种基于自监督变换学习的等变表示方法,在计算机视觉和机器学习任务中表现优秀,突出了其适应性和广泛应用。

arXiv:2501.08712v1
https://github.com/jaemyung-u/stl

领域: 计算机视觉, 机器学习

推荐指数: 4

推荐理由: 该方法在多个基准测试中优于现有方法,特别是在目标检测等需要精确特征的任务上表现出色,同时具有良好的灵活性和适应性,值得关注和进一步深入研究。

—第51篇----

FADE: Towards Fairness-aware Augmentation for Domain Generalization via Classifier-Guided Score-based Diffusion Models

🔍 Keywords: Fairness-aware Domain Generalization, Score-based Diffusion Models, Classifier-Guided Augmentation
PDF Link: http://arxiv.org/pdf/2406.09495v3

摘要: 该论文提出了一种名为FADE的新方法,通过利用预训练的分类器对score-based扩散模型进行引导,有效地从生成的数据中去除敏感信息,从而在保持性能的同时增强公平性。论文在三个真实数据集上的实验结果表明,FADE不仅提高了公平性,还在出现分布偏移时提高了分类准确率,并且优于现有方法的公平性-准确性权衡。

总结: FADE利用预训练的分类器引导score-based扩散模型生成公平的数据样本,在保证泛化性能的同时提高了公平性。

[arXiv: 2406.09495]

[领域: 机器学习, 公平机器学习]

[推荐指数: 5]

推荐理由

该论文提出了一种创新的公平感知域泛化方法FADE,通过利用预训练分类器对扩散模型进行引导,从而有效地去除生成数据中的敏感信息,在保持性能的同时大幅提高了公平性。该方法在多个真实数据集上取得了优秀的实验结果,体现了较强的实用性和创新性,值得进一步探究。

—第52篇----

文章名称

Let Network Decide What to Learn: Symbolic Music Understanding Model Based on Large-scale Adversarial Pre-training

🔍 关键词: cs.SD, cs.AI, eess.AS
链接1

摘要: 作为音乐信息检索(MIR)的关键方面,符号音乐理解(SMU)已经引起了人们的广泛关注,因为它有潜力帮助音乐家和音乐爱好者学习和创造音乐。最近,由于符号音乐和自然语言之间的重大相似性,以及这些模型能够有效利用有限的音乐数据的能力,预训练的语言模型已被广泛采用在SMU中。然而,一些研究表明,像掩码语言模型(MLM)这样的常见预训练方法可能会引入偏差问题,如自然语言处理(NLP)中的种族歧视,并影响下游任务的性能,这在SMU中也会发生。这种偏差通常出现在被掩盖的令牌无法从其上下文中推断出来的情况下,迫使模型过度拟合训练集而不是泛化。为了解决这一挑战,我们提出了Adversarial-MidiBERT,用于SMU,它通过一个掩码网络自适应地决定在MLM期间掩盖什么,而不是采用随机掩码。通过避免掩盖难以从上下文中推断出来的令牌,我们的模型能够更好地捕捉上下文结构和关系,而不仅仅是遵循训练数据分布。我们在四个SMU任务上评估了我们的方法,我们的方法在所有情况下都表现出出色的性能。我们的模型代码公开在 https://github.com/RS2002/Adversarial-MidiBERT

总结: 本文提出了一种基于对抗性预训练的符号音乐理解模型,通过自适应地决定模型掩码的位置,避免了常见预训练方法的偏差问题,在多个符号音乐理解任务中取得了出色的性能。

###【arXiv编号】2407.08306

###【期刊】-

###【领域】计算机音乐, 人工智能

[推荐指数:4]

推荐理由

该文章提出了一种新颖的符号音乐理解模型,通过对抗性预训练来解决常见预训练模型存在的偏差问题,并在多个SMU任务中取得了出色的性能。该方法对音乐信息检索和生成等领域具有重要意义,且代码公开,可复现性强。整体上看是一篇很有创新性和实用价值的研究工作。

—第53篇----

Trustworthy, Responsible, and Safe AI: A Comprehensive Architectural Framework for AI Safety with Challenges and Mitigations

🔍 关键词: AI safety, Trustworthy AI, Responsible AI, Safe AI
[http://arxiv.org/pdf/2408.12935v3]

摘要: 本文提出了一个全新的架构框架,从三个角度(可信赖的AI、负责任的AI和安全的AI)来理解和分析AI安全。文章广泛回顾了当前AI安全研究和进展,并针对各个方面的关键挑战和缓解措施进行了详细阐述。通过大型语言模型等最新技术的实例,提出了设计和测试AI安全的创新机制、方法和技术。目标是推动AI安全研究的进步,最终增强人们对数字化转型的信任。
总结: 提出了一个全面的AI安全架构框架,分析了可信赖、负责任和安全3个方面的关键问题及应对措施。

###【arXiv编号: 2408.12935v3】
###【期刊】
###【领域】计算机科学, AI安全

[推荐指数:5]

推荐理由

该文章提出了一个全面、创新的AI安全架构框架,系统性地分析了当前AI安全面临的各类挑战,并给出了较为详细的应对策略。尤其是对于当前备受关注的大型语言模型等技术的安全特征进行了深入探讨,对于推动AI安全研究与应用具有重要价值。

—第54篇----

文章名称

Diffusion-based Unsupervised Audio-visual Speech Enhancement

🔍 关键词: cs.SD, cs.AI, cs.CV, cs.LG, eess.AS, eess.SP
链接1

摘要: 本文提出了一种新的无监督音频-视觉语音增强(AVSE)方法,该方法结合了基于扩散的音频-视觉语音生成模型和基于非负矩阵分解(NMF)的噪声模型。首先,扩散模型在对应的视频数据上预先训练于干净语音,以模拟语音生成分布。然后将这个预训练模型与基于NMF的噪声模型配对,以迭代估计干净语音。具体来说,在反向扩散过程中实施了基于扩散的后验采样方法,每次迭代后都会获得一个语音估计,并用于更新噪声参数。实验结果证实,所提出的AVSE方法不仅优于其仅限于音频的对应方法,而且也比最近的监督生成性AVSE方法更具有良好的泛化性。此外,新的推理算法在推理速度和性能之间提供了更好的平衡,相比之前的基于扩散的方法。代码和演示可在 https://jeaneudesayilo.github.io/fast_UdiffSE 获得。

总结: 本文提出了一种基于扩散的无监督音频-视觉语音增强方法,通过结合扩散生成模型和NMF噪声模型,可以迭代估计出干净语音,并且优于其他音频单模态和监督生成性方法。

###【arXiv编号】2410.05301
###【git】https://jeaneudesayilo.github.io/fast_UdiffSE
###【领域】计算机科学 - 信号处理

[推荐指数:4]

推荐理由

该论文提出了一种创新性的无监督音频-视觉语音增强方法,结合了扩散生成模型和NMF噪声模型,能够有效提升语音增强的性能,并且比现有监督生成性方法也有更好的泛化能力。论文实验结果充分验证了所提方法的有效性,也提供了开源代码和演示,对相关领域的研究和应用都有较大的参考价值。

—第55篇----

Improving Pain Classification using Spatio-Temporal Deep Learning Approaches with Facial Expressions

🔍 关键词: cs.CV, cs.AI
http://arxiv.org/pdf/2501.06787v2

摘要: 此研究旨在利用深度学习技术来改善基于面部表情的自动化疼痛检测。作者提出了两种新颖的方法: (1) 将ConvNeXt模型与长短期记忆(LSTM)块相结合,以分析视频帧并预测疼痛的存在;(2) 将时空图卷积网络(STGCN)与LSTM集成,以处理来自面部图像的地标以进行疼痛检测。这些模型展示了空间和时间特征结合的有效性,为客观疼痛评估提供了一种有前景的方法。 总结:该文提出的两种新型深度学习模型可有效地利用面部表情进行疼痛检测与分类,为客观疼痛评估提供了新的解决方案。

###【arXiv编号:2501.06787v2】
###【期刊】
###【领域: 计算机视觉, 人工智能】

[推荐指数:5]

推荐理由

该文在疼痛检测这一重要医疗应用领域提出了两种创新性的深度学习模型,利用面部表情分析来实现疼痛的自动检测和分类。这些模型充分利用了时间和空间特征,在实验中展现出了出色的性能,为客观疼痛评估提供了新的解决思路。该工作在计算机视觉、人工智能等领域具有重要价值和应用前景。

—第56篇----

SupplyGraph: A Benchmark Dataset for Supply Chain Planning using Graph Neural Networks

🔍 关键词: supply chain, graph neural networks, production planning, temporal data, FMCG company
arxiv

摘要: 文章介绍了一个名为"SupplyGraph"的真实世界基准数据集,用于时序任务的供应链规划。该数据集来自孟加拉国领先的快速消费品 (FMCG) 公司,包含可用于销售预测、生产规划和发现工厂问题的时间序列数据。作者认为,利用这个数据集,研究人员可以应用图神经网络 (GNN) 来解决众多供应链问题,从而推进供应链分析和规划领域的发展。

总结: 该论文提出了一个基于图神经网络的供应链数据集,可用于各种供应链任务,包括销售预测、生产规划和工厂问题识别。

###【arXiv编号: 2401.15299v3】
###【无git信息】
###【无期刊信息】
###【领域: 机器学习、人工智能、供应链管理、自动化控制】

[推荐指数:4]

推荐理由

这个供应链数据集是一个有价值的资源,可以支持利用图神经网络解决各种供应链管理问题。该数据集包含丰富的时间序列数据,能够支持多种任务,对于推进供应链分析与优化的研究具有重要意义。这种基准数据集的出现将有助于该领域的进一步发展。

—第57篇----

文章名称

🔍 关键词: get rid of isolation, continuous multi-task, spatio-temporal learning, urban intelligence
链接1

摘要: 本文提出了一种连续多任务时空学习框架(CMuST),用于提高城市智能。CMuST提出了一个新的多维时空交互网络(MSTI),允许上下文与主要观察之间以及空间和时间方面的自交互进行交互,这也是捕获任务级别共性和个性化的核心。为确保连续任务学习,设计了一种新的滚动自适应训练方案(RoAda),不仅通过构建基于数据概括的任务提示来保留任务独特性,还通过迭代模型行为建模利用任务之间的相关模式。作者还建立了一个三个城市的多任务时空学习基准,并通过在这些数据集上的广泛评估,实现了在少样本流数据和新领域任务上对现有最先进方法的显著改进。
总结: 本文提出了一种连续多任务时空学习框架,能够有效地利用不同城市数据的相关性,提高时空学习在新情况和新领域的泛化性。

###【arXiv编号】2410.10524
###【git】https://github.com/DILab-USTCSZ/CMuST
###【期刊】-
###【领域】计算机科学, 人工智能, 城市智能

[推荐指数:4]

推荐理由

该论文提出了一种新的连续多任务时空学习框架CMuST,能够有效地利用城市数据的相关性,克服数据分布不平衡、跨领域等问题,在少样本流数据和新领域任务上都取得了显著的性能提升。该方法具有一定创新性,对于城市智能的发展具有重要意义。

—第58篇----

文章名称

🔍 关键词: Automated Simulation Research Workflow, LLM Prompt Engineering, Design
链接1

摘要: 这篇文章探讨了使用大语言模型(LLM)通过提示工程和自动化程序设计来构建自主模拟智能体(ASA)的可行性,以实现整个模拟研究过程的自动化,包括实验设计、远程上传和模拟执行、数据分析和报告编制。以高分子链构象研究为测试案例,作者评估了由不同LLM(如GPT-4o、Claude-3.5等)驱动的ASA的长任务完成度和可靠性。结果显示,ASA-GPT-4o在指定的研究任务上实现了近乎完美的执行,这突出了ASA方法在提高模拟研究效率方面的潜力。作者还讨论了ASA在管理复杂任务时的特点,包括自我验证机制以及局部注意力和全局监督之间的平衡。

总结: 本文提出了一种利用LLM的自主模拟智能体(ASA),可以自动化整个模拟研究过程,包括实验设计、模拟执行、数据分析等,并且在多次迭代中保持良好的可靠性和执行效果。

###【arXiv编号】2408.15512v3
###【git】无
###【期刊】无
###【领域】计算机科学、化学物理

[推荐指数:4]

推荐理由

该文提出的ASA方法在提高模拟研究效率和自动化方面具有良好的潜力,并在多次迭代中保持出色的可靠性。这种利用LLM的系统化方法对于提升科学研究的效率和生产力具有重要意义。

—第59篇----

SPEQ: Stabilization Phases for Efficient Q-Learning in High Update-To-Data Ratio Reinforcement Learning

🔍 关键词: reinforcement learning, q-learning, sample efficiency, computational efficiency
http://arxiv.org/pdf/2501.08669v1

摘要: 该论文提出了一种名为SPEQ的方法,可以提高强化学习的样本效率和计算效率。该方法建立在Dropout Q-Functions (DroQ)算法的基础上,交替进行在线低UTD比训练阶段和离线稳定化阶段。在稳定化阶段,不收集新的环境交互,而是对Q函数进行微调,从而提高replay buffer的有效性并降低计算开销。实验结果表明,SPEQ在连续控制问题上达到了与最新的高UTD比算法相当的效果,但所需的梯度更新次数减少56%,训练时间减少50%。SPEQ提供了一种有效且计算经济的解决方案,同时保持了高UTD比最新算法的同等样本效率。

总结: 该文提出了一种名为SPEQ的方法,可以提高强化学习的样本效率和计算效率,通过交替在线训练和离线稳定化来实现。

###【arXiv编号: 2501.08669】
###【git】
###【期刊】
###【领域: 计算机科学 - 机器学习】

[推荐指数:4]

推荐理由

该论文提出了一种创新的强化学习算法SPEQ,通过引入稳定化阶段来提高计算效率,同时保证了样本效率。实验结果证明了该方法的有效性,是一种值得进一步研究的有趣工作。

—第60篇----

Fully Distributed, Flexible Compositional Visual Representations via Soft Tensor Products

🔍 关键词: Fully Distributed, Flexible Compositional Visual Representations, Soft Tensor Product Representation, Soft TPR Autoencoder
[http://arxiv.org/pdf/2412.04671v2]

摘要: 这篇文章提出了一种称为Soft Tensor Product Representation (Soft TPR)的新型表征方式,用于在深度学习中表达可组合的视觉特征。相比于传统的基于符号的组合表示方法,Soft TPR具有固有的分布式和灵活性特点,能更好地与深度学习的持续、分布式的基础相一致。文章还提出了Soft TPR Autoencoder,这是一种专门设计用于学习Soft TPR的理论框架。在视觉表征学习领域的广泛评估中,Soft TPR框架一直优于传统的解耦表示替代方案,在实现最先进的解耦性、提高表示学习器的收敛以及在下游任务中获得更出色的样本效率和低样本性能方面都表现突出。这些发现突出了分布式和灵活的组合结构表示方法的前景,可能增强与深度学习核心原理的一致性,相比于传统的符号方法更有优势。

总结: 这篇文章提出了一种称为Soft Tensor Product Representation (Soft TPR)的新型视觉表征方式,结合分布式和灵活的特点,克服了传统基于符号的组合表示方法的局限性,在多项评测中显示出优越的性能。

[arXiv:2412.04671]

[git]

[期刊]

[领域: 计算机视觉, 机器学习]

[推荐指数:4]

推荐理由

该文章提出了一种创新性的表征方式Soft TPR,有望更好地与深度学习的基础相一致,在多个评测中展现出优异的性能,对视觉表征学习领域具有重要的理论和应用意义。作为一篇arXiv预印本,虽然还没有被正式发表在期刊上,但其创新性和潜在价值已经很明显。

—第61篇----

Application of Deep Reinforcement Learning to UAV Swarming for Ground Surveillance

🔍 关键词: deep reinforcement learning, UAV swarming, ground surveillance
http://arxiv.org/pdf/2501.08655v1

摘要: 本文深入总结了航空群体的现状,涵盖了经典和基于强化学习的新方法。然后提出了一个混合AI系统,在集中式多智能体群体架构中集成了深度强化学习。该系统专门用于对特定区域进行监视,搜索和跟踪地面目标,应用于安全和执法领域。群体由一个中央群体控制器管理,负责在合作的无人机之间分配不同的搜索和跟踪任务。每架无人机代理由一组合作的子代理控制,其行为使用不同的深度强化学习模型进行了训练,以适应群体控制器提出的不同任务类型。具体来说,使用近端策略优化 (PPO) 算法来训练代理的行为。此外,还定义了一些指标来评估该应用程序中群体的性能。仿真结果表明,该系统能有效搜索作战区域,在合理的时间内获取目标,并能持续稳定地跟踪它们。

总结: 该文章提出了一个基于深度强化学习的无人机群体系统,用于执行地面监视和目标跟踪任务,在搜索效率、跟踪稳定性等方面表现良好。

###【arXiv编号】2501.08655
###【git】无
###【期刊】无
###【领域】计算机视觉、机器人、智能交通

[推荐指数:4]

推荐理由

该论文提出了一个创新性的无人机群体系统,将集中式控制和深度强化学习相结合,在目标检测和跟踪等关键功能上表现优异,在安全和执法等实际应用场景中具有很好的前景。论文理论分析和实验验证都比较充分,系统设计和算法推导也比较完整,具有较强的学术价值。

—第62篇----

文章名称

Fine-grained Spatio-temporal Event Prediction with Self-adaptive Anchor Graph

🔍 关键词: cs.LG, cs.AI, cs.SI
arxiv:2501.08653v1

摘要: 事件预测任务通常处理分布在大空间区域的时空数据。该区域内不同区域表现出不同的特性,同时具有潜在的相关性。这种空间异质性和相关性极大地影响了事件发生的时空分布,这是现有模型尚未解决的。由于连续空间的细粒度和缺乏先验知识,学习事件的空间依赖关系是一个具有挑战性的问题。在这项工作中,我们提出了一种用于细粒度事件预测的Graph Spatio-Temporal Point Process (GSTPP)模型。它采用了编码器-解码器架构,使用神经常微分方程(ODEs)联合对空间分区的状态动力学进行建模。状态演化建立在一种新颖的Self-Adaptive Anchor Graph (SAAG)之上,该图捕捉了空间依赖关系。通过自适应地定位锚点节点并联合构建它们之间的相关边,SAAG增强了模型学习复杂空间事件模式的能力。所提出的GSTPP模型大大提高了细粒度事件预测的准确性。广泛的实验结果表明,我们的方法大大提高了现有时空事件预测方法的预测准确性。

总结: 该文章提出了一种Graph Spatio-Temporal Point Process (GSTPP)模型,可以在细粒度空间上进行时空事件预测,通过自适应锚点图和神经微分方程实现了改进的性能。适用于涉及复杂空间时间相关性的领域,如智慧交通。

[arXiv:2501.08653v1]

[期刊: N/A]

【领域: 计算机、智能系统、时空分析】

[推荐指数: 4]

推荐理由

该文提出的GSTPP模型在细粒度时空事件预测任务中表现出色,通过自适应的空间建模和神经微分方程的结合,很好地解决了现有方法在处理空间异质性和相关性方面的局限性。该模型在实际应用中具有很好的潜力,如智慧交通等领域。

—第63篇----

MAGNET: Augmenting Generative Decoders with Representation Learning and Infilling Capabilities

🔍 关键词: MAGNET, generative decoders, representation learning, infilling, large language models (LLMs)
[http://arxiv.org/pdf/2501.08648v1]

摘要: 本文提出了一种名为MAGNET的方法,用于增强decoder型大语言模型(LLMs)的表示学习和文本填充能力,同时保留了其开放式文本生成能力。MAGNET采用三种自监督训练目标,并引入了一种将双向和因果注意力机制相结合的注意力机制,实现了所有目标的统一训练。实验结果表明,采用MAGNET的LLMs在token级和句子级表示学习任务中超越了强大的文本编码器,能够利用未来上下文生成上下文相关的文本填充,同时保留了预训练期间获得的知识,避免了重复问题。

总结: MAGNET通过自监督训练以及双向注意力机制,增强了decoder型LLMs的表征学习和文本填充能力,同时保留了生成能力。

###【arXiv:2501.08648v1】
###【git】
###【期刊】
###【计算机视觉、自然语言处理】

[推荐指数:4]

推荐理由

MAGNET提出了一种创新的方法,通过自监督训练和双向注意力机制,使decoder型LLMs能够进行有效的表征学习和文本填充,这对于提升语言模型的通用性和实用性具有重要意义。该工作在技术创新和应用前景方面都较为出色。

—第64篇----

SelectIT: Selective Instruction Tuning for LLMs via Uncertainty-Aware Self-Reflection

🔍 关键词: Instruction Tuning, Large Language Models, Uncertainty-Aware, Self-Reflection
链接1

摘要: 文章提出了一种新的方法SelectIT,利用LLM自身的内在不确定性,有效选择高质量的Instruction Tuning(IT)数据,无需额外的资源。同时构建了一个基于SelectIT的Selective Alpaca数据集。实验结果表明,使用Selective Alpaca进行IT可以显著提升LLM的能力。SelectIT的健壮性也在不同基础模型和特定领域任务中得到验证。研究发现,更长时间和计算量更大的IT数据可能是更优秀的IT来源,为未来相关研究提供了有价值的见解。

总结: 文章提出了一种利用LLM自身不确定性选择高质量IT数据的方法SelectIT,并基于此构建了Selective Alpaca数据集,实验证明SelectIT能够显著提升LLM的性能。

###【arXiv编号】2402.16705v2
###【git】https://github.com/Blue-Raincoat/SelectIT
###【领域】自然语言处理, 机器学习

[推荐指数:4]

推荐理由

该文章提出了一种创新性的方法利用LLM自身的不确定性进行高质量IT数据的选择,避免了依赖额外模型和数据的问题。实验结果也充分验证了该方法的有效性和健壮性,对LLM的能力提升产生了显著影响。该成果为未来LLM的高效Instruction Tuning提供了有价值的理论和实践指导。

—第65篇----

文章名称

Making AI Less “Thirsty”: Uncovering and Addressing the Secret Water Footprint of AI Models

🔍 关键词: AI, water footprint, sustainability
链接1

摘要: 本文旨在探讨人工智能(AI)技术的水足迹问题。培训GPT-3语言模型可直接蒸发70万升纯净淡水,但这一信息一直被隐瞒。全球AI需求预计到2027年将占用42-66亿立方米的水资源,超过4-6个丹麦或英国一半的年水使用量。这是令人担忧的,因为淡水短缺已成为最紧迫的挑战之一。为应对全球水资源挑战,AI必须担负起社会责任,通过解决自身的水足迹来发挥引领作用。本文提出了一种原则性的方法来估算AI的水足迹,并探讨了AI运行时水效率的独特时空差异。最后,作者强调需要从整体上解决水足迹和碳足迹,实现真正意义上的可持续AI。

总结: 本文揭示了AI对水资源的巨大需求,影响严重,认为AI必须承担起解决自身水足迹的社会责任。

###【arXiv编号: 2304.03271】
###【领域: 计算机、人工智能】

[推荐指数:4]

推荐理由

该文章系统地研究了AI模型训练过程中的潜在水足迹问题,并提出了相应的解决方案,对于推进AI技术的可持续发展具有重要意义。作者的研究方法和结论都有很强的针对性和推广性,值得业界参考。

—第66篇----

文章名称

🔍 关键词: Reassessing the Role of Chain-of-Thought in Sentiment Analysis: Insights and Limitations
链接1

摘要: 该篇文章探讨了语言和思维之间的关系,并在大语言模型的背景下,研究了推理技术是否可以促进语义理解。具体来说,作者将思维概念化为推理,采用链式思维提示作为推理技术,并研究其对情感分析任务的影响。实验结果表明,链式思维对情感分析任务的影响很小,生成的内容更多关注了具体词语而非情感倾向。此外,反事实实验表明,模型处理情感任务主要依赖于示例演示的信息。总的来说,这些实验结果支持了"语言与思维相独立"的观点。
总结: 尽管采用推理技术,但对提升大语言模型在情感分析任务上的表现效果有限,主要依赖于示例数据。
###【arXiv编号】2501.08641v1
###【领域】计算机科学

[推荐指数:3]

推荐理由

文章针对语言与思维这一复杂问题,采用对比实验的方式,客观评估了推理技术对于大语言模型在情感分析任务上的影响,结果表明推理技术对提升模型的情感理解能力帮助有限,主要依赖于示例数据。这一结论对于认知科学和人工智能领域的相关研究都有一定的启示作用,值得关注。

—第67篇----

文章名称

🔍 关键词: knowledge conflicts, language model, question answering
链接1

摘要: 本文针对知识驱动的seq-to-seq生成任务,如基于文档的问答和文档摘要系统,探讨了两个基本的知识源:模型参数中嵌入的固有知识和通过上下文获得的外部知识之间的矛盾问题。研究发现,当训练数据中固有知识与正确答案存在不一致时,系统在推理过程中可能出现忽略输入上下文或生成不忠实内容等问题。作者提出了一种最小化幻觉的策略,建立源输入和生成输出之间的显式联系,特别针对问答中常见的幻觉模式,研究模型训练过程中实体及其上下文的对应关系如何影响推理性能。
总结: 本文针对语言模型在问答任务中存在的知识冲突和虚假信息生成问题提出缓解策略。

###【arXiv编号: 2411.11344】
###【领域:计算机科学-自然语言处理,人工智能】

[推荐指数:4]

推荐理由

本文提出了一种新颖的策略来减少语言模型在问答任务中生成虚假信息的问题,既有理论上的创新,也有实践价值。该方法能够显著提高模型在问答任务中的可靠性和忠实度,对于提高智能问答系统的性能和可信度具有重要意义。

—第68篇----

文章名称: OminiControl: Minimal and Universal Control for Diffusion Transformer

🔍 关键词: OminiControl, Diffusion Transformer, image conditions, parameter-efficient, subject-driven generation, spatially-aligned conditions
链接

摘要: 本文提出了 OminiControl,一个高度通用和参数高效的框架,它将图像条件整合到预训练的扩散变换器(DiT)模型中。OminiControl核心利用参数重用机制,使DiT能够使用自身作为强大的主干来编码图像条件,并通过其灵活的多模态注意力处理器来处理这些条件。与依赖于复杂编码器模块的现有方法不同,OminiControl(1)仅使用约0.1%的额外参数就能有效高效地整合注入的图像条件,(2)以统一的方式解决了各种图像条件任务,包括主题驱动生成和空间对齐条件,如边缘、深度等。值得注意的是,这些能力是通过训练DiT自身生成的图像而实现的,这对于主题驱动生成特别有益。广泛的评估表明,OminiControl在主题驱动和空间对齐条件生成方面都优于现有的基于UNet和DiT的模型。此外,我们还发布了训练数据集Subjects200K,这是一个多样化的包含超过20万个身份一致图像的集合,以及一个高效的数据合成管道,以推进主题一致生成的研究。

总结: OminiControl是一个参数高效、通用的框架,能够将图像条件集成到预训练的扩散变换器模型中,在主题驱动和空间对齐条件生成任务上取得了优异的性能。

###【arXiv编号】2411.15098v4
###【git】无
###【期刊】无
###【领域】计算机视觉,人工智能,机器学习

[推荐指数:4]

推荐理由

该论文提出了一种创新性的框架OminiControl,可以高度灵活地将各种图像条件整合到扩散变换器模型中,在参数高效和性能方面都有很好的表现。相比于依赖复杂编码器的现有方法,OminiControl使用自身作为主干有效地编码图像条件,这不仅简化了模型结构,而且在主题驱动生成任务上特别有优势。该框架在多种图像条件生成任务上展现了出色的通用性,并且发布了一个大规模的图像数据集,对于相关研究的推进也有重要意义。总的来说,这是一篇创新性较强、实用性较高的优秀论文。

—第69篇----

CrossFi: A Cross Domain Wi-Fi Sensing Framework Based on Siamese Network

🔍 关键词: cs.CV, cs.AI, cs.LG, eess.SP
http://arxiv.org/pdf/2408.10919v3

摘要: 该文提出了一种基于 Siamese 网络的跨域 Wi-Fi 感知框架 CrossFi。它可以在不同场景下实现较好的性能,包括少样本、零样本和少样本新类别场景。其核心组件是一个称为 CSi-Net 的样本相似性计算网络,通过注意力机制捕捉相似性信息,而不是简单的计算距离或余弦相似性。此外,它还包含一个 Weight-Net 模块,可以为每个类生成一个模板,使 CrossFi 在不同场景下都能工作。实验结果表明,CrossFi 在不同场景下都达到了最先进的性能。

总结: 提出了一种基于 Siamese 网络的跨域Wi-Fi感知框架 CrossFi,可以在不同场景下实现较好的性能。

###【arXiv编号】2408.10919
###【git】https://github.com/RS2002/CrossFi
###【领域】计算机视觉、人工智能、机器学习、信号处理

[推荐指数:4]

推荐理由

该论文解决了Wi-Fi感知领域中数据集匮乏导致的域迁移问题,提出了一个基于Siamese网络的跨域Wi-Fi感知框架CrossFi,在不同场景下都取得了出色的性能,包括少样本、零样本和新类别场景。该工作具有较强的创新性和实用性,能够有效推动Wi-Fi感知技术在各种应用场景中的部署。

—第70篇----

文章名称

The Silent Majority: Demystifying Memorization Effect in the Presence of Spurious Correlations

🔍 关键词: cs.LG, cs.AI, cs.CV, eess.IV
链接1

摘要: 机器学习模型经常依赖于简单的虚假特征–训练数据中与目标相关但又不具有因果关系的模式,如前景分类中的图像背景。这种依赖通常会导致少数群体和多数群体之间的测试性能失衡。在这项工作中,我们从记忆化的角度更深入地探讨了这种失衡性能的根本原因。记忆化指的是能够准确预测训练集中的"不典型"示例(少数群体),但在测试集中无法实现同等的准确性。本文系统地展示了网络内少量神经元中存在普遍的虚假特征,这为记忆化可能导致失衡群体性能提供了第一手证据。通过三个实验来源的收敛性实证证据,我们发现了少量神经元或通道记忆少数群体信息的特性。受这些发现的启发,我们提出了假设:失衡群体性能是"嘈杂"虚假记忆被限制在少量神经元的副产品。为进一步证实这一假设,我们展示在训练过程中通过一个新框架消除这些不必要的虚假记忆模式,可以显著影响模型在少数群体上的性能。我们在各种架构和基准上的实验结果为揭示神经网络编码核心和虚假知识奠定了基础,为未来研究应对虚假相关提供了新的见解。

总结: 本文探讨了机器学习模型依赖简单虚假特征导致少数群体和多数群体测试性能失衡的问题,提出了记忆化的视角来分析这种现象,并展示了神经网络内少量神经元记忆少数群体信息的特性,最终提出了一种新的方法来消除这种不必要的虚假记忆,从而改善少数群体的预测性能。

###【arXiv编号: 2501.00961】
###【链接: http://arxiv.org/pdf/2501.00961v2
###【领域: 机器学习、人工智能、计算机视觉、图像处理】

[推荐指数: 4]

推荐理由

该研究深入探讨了机器学习模型依赖虚假特征导致的性能失衡问题,提供了新的理论视角和实验证据,并提出了一种有效的解决方案。工作创新性强,实用价值高,对于提高模型的鲁棒性和公平性具有重要意义,值得进一步关注和推广。

—第71篇----

文章名称:
ViBidirectionMT-Eval: Machine Translation for Vietnamese-Chinese and Vietnamese-Lao language pair

🔍 关键词: cs.CL, cs.AI
[http://arxiv.org/pdf/2501.08621v1]

摘要: 这篇论文介绍了VLSP 2022-2023机器翻译共享任务的结果,主要关注越南语-中文和越南语-老挝语机器翻译。这些任务是作为第9届和第10届越南语言和语音处理研讨会(VLSP 2022, VLSP 2023)的一部分组织的。这些共享任务的目标是构建机器翻译系统,特别针对越南语-中文和越南语-老挝语翻译(对应4个翻译方向)。提交作品在新闻和一般领域测试数据集上使用BLEU和SacreBLEU等标准指标进行评估。此外,专家还对系统输出进行了人工评判,这在对机器翻译模型性能进行排名方面起到了关键作用,确保了更全面的评估。

总结: 本文介绍了基于VLSP 2022-2023共享任务的越南语-中文和越南语-老挝语机器翻译系统的研究与评估结果。

###【arXiv编号: 2501.08621】
###【领域: 自然语言处理,人工智能】

[推荐指数: 4]

推荐理由

该论文系统地报告了基于VLSP 2022-2023共享任务的越语-中文和越语-老挝语机器翻译技术的最新进展,提出了全面的人工评估机制来确保评估的客观性,对该语言翻译技术的发展具有重要意义。

—第72篇----

文章名称

🔍 关键词: 层次语法, 线性语法, 大型语言模型
链接1

摘要: 该论文探讨了大型语言模型中对层次语法和线性语法的处理机制是否有不同。研究发现,语言模型在处理具有层次结构和线性结构的输入时,表现出了不同的行为特点。进一步分析发现,处理层次语法的组件与处理线性语法的组件是相互独立的。作者还发现,对层次结构的敏感性不仅存在于自然语言,也存在于人造语法中,这表明这种敏感性并非与语义或训练数据相关,而可能是一种内在的认知特点。
总结: 大型语言模型中存在独立的处理层次语法和线性语法的机制。

###【arXiv:2501.08618v1】
###【无】
###【无】
###【计算语言学, 人工智能】

[评分: 5]

推荐理由

该论文深入探讨了大型语言模型在处理不同语法结构输入时的内部机制,发现了语法处理的神经功能分离,这对理解人类语言信息处理的神经基础有重要启示。该研究具有较强的创新性和潜在应用价值。

—第73篇----

RLHS: Mitigating Misalignment in RLHF with Hindsight Simulation

🔍 关键词: RLHF, 强化学习, 人类反馈, 长期效果, 模型优化
arxiv.org/pdf/2501.08617v1

摘要: 本文提出了一种名为RLHS的新方法,通过模拟潜在的下游后果,获取基于事后反馈的评估,来减轻RLHF中存在的误差问题。这种方法可以缓解直接依赖人类反馈产生的Goodhart效应,减少模型对人类偏好的错误学习。作者在两种常见的RLHF算法(PPO和DPO)上进行了实验验证,结果表明RLHS能够显著降低误差,并在人机交互实验中获得更高的用户满意度。这突出了关注长期后果,即使是模拟的,也能有助于缓解RLHF中的误差问题。

总结: 本文提出了一种基于模拟事后反馈的RLHS方法,通过减轻直接依赖人类反馈产生的误差,显著降低了RLHF中的偏差问题,在实践中取得了更好的用户体验。

###【arXiv编号:2501.08617v1】
###【无git、期刊信息】
###【计算机 / 人工智能领域】

[推荐指数:4]

推荐理由

该论文提出了一种创新的RLHF改进方法RLHS,能有效缓解现有RLHF存在的Goodhart效应,减少误差并提升用户体验。方法设计合理,实验结果也验证了其有效性,对于提高AI安全性和可靠性具有重要意义,是一篇较为出色的工作。

—第74篇----

Noise-powered Multi-modal Knowledge Graph Representation Framework

🔍 关键词: Noise-powered, Multi-modal Knowledge Graph, Representation Framework
arXiv

摘要: 跨模态预训练的兴起突出了对统一的跨模态知识图谱(MMKG)表示学习框架的必要性。这样一个框架对于有效地将结构化知识嵌入到跨模态的大型语言模型中至关重要,可以缓解知识误解和跨模态幻觉等问题。在这项工作中,我们探讨了模型在准确嵌入MMKG中实体的效力,通过两个关键任务:跨模态知识图谱补全(MKGC)和跨模态实体对齐(MMEA)。在此基础上,我们提出了一种新颖的SNAG方法,该方法利用一种配备有模态级噪声掩蔽的基于变压器的架构,以稳健地整合KG中的跨模态实体特征。通过为MKGC和MMEA两个任务整合特定的培训目标,我们的方法在总共10个数据集上实现了最先进的性能,展现了它的多样性。此外,SNAG不仅可以作为一个独立的模型发挥作用,还可以增强其他现有方法,提供稳定的性能改善。代码和数据可在https://github.com/zjukg/SNAG获得。

总结: 该文提出了一种基于噪声的跨模态知识图谱表示框架(SNAG),在跨模态知识图谱补全和跨模态实体对齐任务上取得了最佳性能,可以有效嵌入跨模态结构化知识,并能提升其他方法的性能。

[arXiv:2403.06832]

[git:https://github.com/zjukg/SNAG]

领域: 自然语言处理, 知识图谱

推荐指数: 4

推荐理由

该文提出了一种创新性的跨模态知识图谱表示框架,通过利用噪声掩蔽等技术,能够有效地将不同模态的实体特征整合到统一的表示中,在知识图谱补全和实体对齐任务上取得了最佳性能,可有效解决跨模态知识融合中的关键问题。该方法可为大型语言模型提供更准确的结构化知识表示,对于提升自然语言理解和生成的能力具有重要意义。

—第75篇----

文章名称

🔍 关键词: Monte Carlo Tree Search, LLM-Based Automatic Heuristic Design
http://arxiv.org/pdf/2501.08603v1

摘要: 手工制作启发式算法来解决复杂的规划任务(如NP难组合优化问题)是一种常见的做法,但需要大量的领域知识。最近,基于大型语言模型(LLM)的自动启发式设计(AHD)方法已经显示出生成高质量启发式算法的潜力,无需人工干预。现有的基于LLM的AHD方法使用群体来维护一定数量的表现最佳的LLM生成启发式算法,并引入进化计算(EC)来逐步增强群体。然而,基于群体的过程带有贪婪性质,通常导致收敛到局部最优。相反,为了更全面地探索启发式算法的空间,我们提出使用蒙特卡洛树搜索(MCTS)进行基于LLM的启发式进化,同时在树结构中保留所有LLM生成的启发式算法。通过一种新颖的思维对齐过程和一种探索衰减技术,所提出的MCTS-AHD方法在各种复杂任务上生成了显著更高质量的启发式算法。我们的代码可在https://github.com/zz1358m/MCTS-AHD-master获得。
总结: 该文提出了一种基于蒙特卡洛树搜索的自动启发式设计方法,相比于现有基于语言模型的群体进化方法,能够更全面地探索启发式算法的空间,生成更高质量的启发式算法。
###【arXiv编号】2501.08603
###【git】https://github.com/zz1358m/MCTS-AHD-master
###【领域】人工智能

[推荐指数:5]

推荐理由

该文提出的MCTS-AHD方法利用蒙特卡洛树搜索来探索启发式算法的空间,相比于现有基于语言模型的群体进化方法,能够更全面地进行搜索,生成更高质量的启发式算法。该方法在复杂的组合优化问题上表现出色,是一种值得关注的自动启发式设计新方法。

—第76篇----

本篇文章属于机器学习和人工智能领域。

摘要: 机器无学习技术涉及撤销数据记录并减少这些数据对训练模型的影响,可帮助实现用户隐私保护目标,但同时也会带来巨大的计算成本。基于权重扰动的无学习是一种通用方法,但它通常涉及全局修改参数。我们提出了微调Top-K和Random-k参数扰动的近似机器无学习策略,在满足隐私需求的同时保持计算成本可控。为了证明我们策略的有效性,我们还解决了评估机器无学习有效性的挑战,即考虑无学习和剩余数据上模型的泛化性能。为了更好地评估无学习效果和模型泛化,我们提出了新的指标,即遗忘率和记忆保持率。但是,对于近似机器无学习,当前的指标无法充分量化应用无学习策略后发生的遗忘程度。为了解决这个问题,我们引入了SPD-GAN,它会微妙地扰动目标无学习数据的分布。然后,我们通过测量模型在扰动的无学习数据上的性能差异来评估无学习的程度。通过实现这些创新性的技术和指标,我们在不显著牺牲模型性能的情况下,实现了计算上高效的隐私保护。此外,这种方法还提供了一种新的评估无学习程度的方法。

总结: 本文提出了一种基于权重扰动的机器无学习策略,能够在保护隐私的同时保持较低的计算成本,并引入新的指标和方法来评估无学习的效果,为机器学习隐私保护提供了新的解决方案。

—第77篇----

文章名称

🔍 关键词: AutoRestTest, REST API Testing, LLMs, MARL
链接1

摘要: AutoRestTest 是一种新的工具,结合了语义操作依赖图 (SODG)、多智能体强化学习 (MARL) 和大型语言模型 (LLMs) 来实现对 REST API 的有效测试。该工具可以确定操作相关的参数,并使用五个专门的智能体来识别操作的依赖关系,生成操作序列、参数组合和参数值。AutoRestTest 提供了命令行界面和持续的遥测数据,并在测试完成后生成一份详细的报告,突出显示检测到的错误和执行的操作。总之,AutoRestTest 是一款创新的 REST API 自动化测试工具。
总结: AutoRestTest 是一种基于 SODG、MARL 和 LLMs 的 REST API 自动化测试工具,能够有效发现 API 中的错误。

【arXiv编号】2501.08600v1

【领域】计算机科学

[推荐指数:4]

推荐理由

该文章提出了一种创新的基于 SODG、MARL 和 LLMs 的 REST API 自动化测试工具,能够有效地发现 API 中的错误和依赖关系,提高测试覆盖率,对于提高 REST API 的质量和可靠性具有重要意义。

—第78篇----

LlamaRestTest: Effective REST API Testing with Small Language Models

🔍 Keywords: REST API testing, language models, OpenAPI specification, black-box testing
[http://arxiv.org/pdf/2501.08598v1]

摘要: 该论文提出了一种名为 LlamaRestTest 的新方法,利用两个定制的小型语言模型来生成现实的测试输入并在测试过程中发现参数依赖关系。这些语言模型是通过使用 REST API 示例值和参数依赖关系的挖掘数据对 Llama3-8B 模型进行微调而创建的。作者评估了 LlamaRestTest 在 12 个真实世界服务上的性能,并与 RESTGPT 和几种最先进的 REST API 测试工具进行了比较。结果表明,微调可使较小的语言模型在检测可操作规则和生成 REST API 测试输入方面优于更大的模型。LlamaRestTest 在代码覆盖率和错误检测方面超过了最先进的工具,即使使用 RESTGPT 增强的规范也是如此。

总结: 该论文提出了一种新的 REST API 测试方法 LlamaRestTest,利用定制的小型语言模型生成测试输入并发现参数依赖关系,在性能上显著优于当前的测试工具。

###【arXiv编号: 2501.08598v1】
###【git】
###【期刊】

###【领域】计算机、软件工程

[推荐指数:4]

推荐理由

该论文提出了一种创新的 REST API 测试方法,利用小型语言模型能够生成更真实的测试输入,并在测试过程中发现参数依赖关系,较传统的黑盒测试方法有明显的优势。作者进行了充分的评估和对比,结果表明该方法在代码覆盖率和错误检测方面都优于当前的最先进工具。该研究对于提高 REST API 测试效率和质量具有重要意义。

—第79篇----

STORM: A Spatio-Temporal Factor Model Based on Dual Vector Quantized Variational Autoencoders for Financial Trading

🔍 关键词: STORM, Spatio-Temporal Factor Model, Dual Vector Quantized Variational Autoencoders, Financial Trading
arxiv:2412.09468v2

摘要: 这篇论文提出了一种基于双向量量化变分自动编码器的时空因子模型STORM,用于金融交易。该模型从时间和空间两个方面提取股票特征,然后在细粒度和语义层面融合和对齐这些特征,并使用多维嵌入表示因子。离散的码本将相似的因子嵌入聚类在一起,确保了正交性和多样性,有助于区分不同的因子并在金融交易中进行因子选择。实验证明STORM在两个股票数据集的投资组合管理和六只特定股票的个人交易任务中表现出色,具有良好的适应性。

总结: STORM是一种基于双向量量化变分自动编码器的时空因子模型,可以有效地在金融交易中捕捉股票的时间和空间模式,并输出高质量、多样性的因子表示,从而在投资组合管理和个股交易任务上表现优异。

###【arXiv:2412.09468v2】
###【无git信息】
###【无期刊信息】

领域: 计算机科学, 人工智能

[推荐指数:5]

推荐理由

该论文提出了一种新颖的时空因子模型STORM,在建模股票时间序列和空间相关性方面有重大创新,输出的因子表示可与主流投资策略无缝融合,在实际金融交易任务中取得了显著的性能提升,非常值得关注和应用。

—第80篇----

以下是针对给定文章信息的总结:

OpenMLDB: A Real-Time Relational Data Feature Computation System for Online ML

🔍 关键词: OpenMLDB, 实时特征计算, 在线机器学习
arxiv

摘要: OpenMLDB是一个特征计算系统,专为在线机器学习应用而设计。它通过统一的查询计划生成器,实现了离线训练和在线服务阶段的计算结果一致性。同时,OpenMLDB提供了针对复杂时间序列计算的高性能在线执行引擎,解决了现有系统在低延迟要求下的性能瓶颈。此外,它还采用紧凑数据格式和流式索引技术,进一步提高了内存利用率和数据访问速度。评测结果显示,与基线系统相比,OpenMLDB在性能和资源消耗方面都有显著改善。

总结: OpenMLDB是一款针对在线机器学习应用的实时特征计算系统,通过统一的查询计划、高性能计算引擎和优化的数据存储,解决了现有系统在低延迟要求下的性能问题。

###【arXiv编号: 2501.08591】
###【git:暂无】
###【期刊:暂无】
###【领域: 数据库,人工智能,机器学习】

[推荐指数: 5]

推荐理由

该系统针对在线机器学习应用的特征计算需求进行了全面优化,在查询一致性、执行性能和数据存储等方面都提出了创新性解决方案,在实际应用中也展现出了显著优势,非常值得关注和学习。

—第81篇----

Sound Scene Synthesis at the DCASE 2024 Challenge

🔍 关键词: sound scene synthesis, audio content generation, DCASE Challenge
PDF链接

摘要: 本文介绍了DCASE 2024 Challenge中的第7个任务: 声音场景合成。近年来,声音合成和生成模型的进步使得创造逼真且多样的音频内容成为可能。我们引入了一个标准化的评估框架,融合客观和主观指标来比较不同的声音场景合成系统。本次挑战吸引了4个团队参与,我们使用Fr’echet Audio Distance (FAD)和人类感知评级对其进行了评估。我们的分析揭示了当前声音场景合成系统的能力和局限性,同时也突出了这个快速发展领域的未来改进方向。

总结: 该论文介绍了DCASE 2024 Challenge中声音场景合成任务,包括评估框架和4个参与团队的系统性能分析,突出了该领域的进展及未来研究方向。

###【arXiv编号】2501.08587
###【领域】计算机音频、声学信号处理

[推荐指数:4]

推荐理由

该工作提出了声音场景合成的标准化评估框架,涵盖客观指标和主观感知,为该领域的发展提供了有价值的参考。4个参与团队的系统分析也充分体现了当前声音合成技术的进展和局限性,对于进一步优化声音合成系统具有重要意义。整体来看,该工作在声音合成领域做出了有价值的贡献。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值