《孟子·告子下》

孟子曰:“舜发于畎亩之中,傅说举于版筑之间,胶鬲举于鱼盐之中,

管夷吾举于士,孙叔敖举于海,百里奚举于市。故天将降大任于斯人

也,必先苦其心志,劳其筋骨,饿其体肤,空乏其身,行拂乱其所为,

所以动心忍性,曾益其所不能。人恒过,然后能改;困于心,衡于虑,

而后作;征于色,发于声,而后喻。入则无法家拂士,出则无敌国外患

者,国恒亡。然后知生于忧患而死于安乐也。”

### 孟子中文T5预训练生成模型概述 孟子预训练模型技术涵盖了多种架构,其中包括类似于T5的生成式预训练模型[^1]。这类模型不仅继承了原始T5架构的优势——即通过编码器-解码器结构实现强大的文本生成能力,还特别针对汉语语境进行了优化调整。 #### 特殊设计与优势 为了更好地服务于特定行业需求,如金融领域,该类模型采用了专门的数据集进行微调处理。这意味着,在面对诸如合同解析、财经新闻摘要等任务时,其表现尤为出色。此外,考虑到实际应用中的成本效益问题,“孟子”团队采取了一系列措施来降低资源消耗并提高效率,例如仅用约10亿参数便实现了卓越的成绩,在CLUE评测体系内名列前茅[^3]。 #### 应用实例展示 下面给出一段简单的Python代码片段用于加载并测试一个基于Transformers库封装好的孟子-T5模型: ```python from transformers import AutoModelForSeq2SeqLM, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("langboat/mengzi-t5-base") model = AutoModelForSeq2SeqLM.from_pretrained("langboat/mengzi-t5-base") input_text = "解释一下什么是区块链?" inputs = tokenizer(input_text, return_tensors="pt").input_ids outputs = model.generate(inputs) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` 这段程序会读取输入字符串`"解释一下什么是区块链?"`作为提示词,并尝试利用预先训练过的孟子-T5基础版模型生成相应的回答内容。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值