- 博客(70)
- 收藏
- 关注
原创 机器学习【六】readom forest
随机森林通过集成多棵差异化的决策树(每棵树仅使用随机数据和特征子集),降低模型方差,提升预测稳定性。其核心优势在于:抗过拟合能力强(Bagging+特征随机性);自动处理缺失值、类别特征及高维数据;内置OOB误差评估(免交叉验证)和特征重要性分析。数学本质是降低树间相关性ρ以逼近方差为0的理想状态。
2025-08-04 23:54:34
706
原创 NLP概述
自然语言处理(NLP)是人工智能的重要分支,旨在让计算机理解、处理和生成人类语言。其发展经历了规则方法、统计学习和深度学习三个阶段。本文介绍了NLP的基本概念、应用场景(如机器翻译、情感分析等)以及文本表示方法的演变:从简单的One-Hot编码、考虑词频权重的TF-IDF,到捕捉词序的N-gram模型,再到能够表达语义关系的分布式表示(如Word2Vec)。最后列举了PyTorch、HuggingFace等常用工具框架。这些技术共同构成了现代NLP系统的基础。
2025-08-04 14:25:25
933
原创 Spring 学习笔记
本文系统介绍了Spring和SpringBoot框架的核心概念与应用。首先阐述了框架的定义与价值,通过建筑类比说明框架能提高开发效率;其次详细解析了Spring框架的IoC容器、AOP等核心机制,以及从XML配置到注解驱动的演进过程;然后重点讲解了SpringBoot的自动配置特性;最后深入探讨了AOP的实现原理,包括静态代理、JDK动态代理和CGLIB代理三种模式的对比。全文通过丰富代码示例展示了Spring技术的实际应用,为Java开发者提供了从基础到进阶的系统学习路径,帮助理解现代企业级应用开发的核心
2025-08-04 00:02:05
824
原创 机器学习【五】decision_making tree
决策树是一种通过树形结构进行数据分类或回归的直观算法,其核心是通过层级决策路径模拟规则推理。主要算法包括:ID3算法基于信息熵和信息增益选择划分属性;C4.5算法改进ID3,引入增益率和剪枝技术解决多值特征偏差;CART算法采用二叉树结构,支持分类(基尼系数)与回归(方差)任务。信用卡欺诈检测案例实践展示了全流程应用:通过SMOTE处理样本不平衡,转换时间特征及标准化数值完成数据预处理;利用网格搜索优化模型参数,可视化特征重要性与树结构;设置动态阈值平衡误报与漏报率,最终部署为实时检测系统并定期更新模型。
2025-08-02 19:54:51
651
原创 机器学习【四】Bayes
核心公式后验概率 = (似然 × 先验) / 证据👉 例:高烧似流感(似然90%),但流感基础概率仅0.1%,实际患病概率仅1.77%朴素贝叶斯精髓⚡️ 强假设:特征相互独立(虽简化却高效)⚡️ 分类公式:预测类别 = argmax[ 类别先验 × Π(特征概率) ]⚡️ 连续特征:用高斯分布计算概率密度平滑救星🔥 拉普拉斯平滑:新概率 = (出现次数 + 1) / (总样本数 + 特征类型数)消除零概率炸弹,如"Viagra"
2025-08-02 00:34:03
600
原创 机器学习【三】SVM
本文系统介绍了支持向量机(SVM)的理论与实践。理论部分首先区分了线性可分与不可分问题,阐述了SVM通过寻找最优超平面实现分类的核心思想,包括支持向量、间隔最大化等关键概念。详细讲解了硬间隔与软间隔SVM的数学原理,以及核函数(线性核、多项式核、RBF核)在非线性问题中的应用。实践部分通过Python代码演示了SVM在不同场景下的应用:线性可分数据分类、参数C的调节效果、非线性数据分类中核函数的选择比较,并以信用卡欺诈检测为例,展示了网格搜索调参和模型评估的完整流程。最后总结了SVM在小样本、高维数据中的优
2025-08-01 08:53:51
673
原创 机器学习【二】KNN
KNN算法是一种基于实例的惰性学习算法,其核心思想是通过"多数投票"机制进行分类决策。算法流程包括数据准备(需归一化处理)、距离计算(常用欧氏距离)、选择K值(通过交叉验证确定)和决策规则(分类用投票,回归取平均)。KNN具有简单直观、无需训练等优点,但也存在预测速度慢、高维效果差等缺点。实际应用中需注意K值选择、样本不平衡等问题,可通过距离加权、自适应K值等方法优化。文中以鸢尾花分类为例展示了KNN的实现过程,并通过可视化展示了不同K值对决策边界的影响。
2025-07-31 01:02:16
1019
1
原创 机器学习【一】线性模型
本文系统介绍了机器学习中的线性模型及其应用。主要内容包括:1)线性回归的基本原理、数学表达式和优化方法;2)分类与回归任务的区别;3)正则化方法(L1/LASSO回归和L2/岭回归)的理论与实现;4)逻辑回归的原理及其在分类问题中的应用;5)多项式回归的非线性扩展。通过Python代码示例展示了各模型的实际应用,包括加利福尼亚房价预测案例,比较了不同模型的性能表现。文章强调线性模型在机器学习中的基础性地位,以及正则化在防止过拟合和特征选择中的重要作用。
2025-07-30 00:56:30
960
原创 PyTorch 数据类型和使用
PyTorch学习笔记:Tensor数据类型与FashionMNIST图像分类实践 摘要: 本文系统介绍了PyTorch的核心数据类型Tensor及其应用。Tensor作为多维矩阵数据容器,支持0-4维数据结构(标量到批量图像),并提供了多种数值类型(float32/int64等)。通过积木类比阐述了Tensor的维度概念,展示了创建、变形、随机生成等基础操作。重点演示了FashionMNIST数据集分类任务实战:构建包含两个全连接层的神经网络(QYNN),使用交叉熵损失和SGD优化器进行训练。
2025-07-29 18:01:34
891
原创 Vue 框架 学习笔记
本文总结了Vue框架的核心知识点,包括:1. 基础概念:渐进式框架、两种使用方式、Vue实例创建流程、模板语法和响应式特性。2. 常用指令:详细介绍了v-html、v-show/v-if、v-for、v-on、v-bind、v-model等10个指令的功能和用法。3. 组件开发:组件结构、注册方式(全局/局部)、数据传递(Props)、组件通信(自定义事件/插槽)、生命周期钩子和动态组件。4. 进阶特性:计算属性、侦听器、依赖注入和异步组件。5. 工程化应用:项目结构、应用实例创建和公共资源管理。文
2025-07-27 15:02:28
933
原创 绘图库 Matplotlib Search
本文简单介绍绘图库、图形嵌套、刻度调整及图片保存等操作。对于Seaborn,则介绍了其高级封装特性,详细说明了各类图表(分布图、关系图、分类图、热力图等)的核心参数及适用场景,并提供了丰富的示例代码。通过学习,读者可以掌握使用这两个库进行数据分析可视化的基本技能,包括创建折线图、柱状图、散点图、饼图等常见图表,以及如何设置图表风格和调色板。
2025-07-25 19:56:02
1061
原创 动态规划学习
在进行算法题练习和一些题目中发现关于动态规划的内容较多,觉得有必要系统的学习和练习一下。于是参照bilbilUP主英雄哪里出来的动态规划50题和LeetKoke网站进行学习和练习
2025-02-02 16:56:13
1101
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人