背景
在如今的软件当中,缓存是解决很多问题的一个关键概念。你的应用可能会进行CPU密集型运算。你当然不想让这些运算一边又一边的重复执行,相反,你可以只执行一次, 把这个结果放在内存中作为缓存。有时系统的瓶颈在I/O操作上,比如你不想重复的查询数据库,你想把结果缓存起来,只在数据发生变化时才去数据查询来更新缓存。
与上面的情况类似,有些场合下我们需要进行快速的查找来决定如何处理新来的请求。例如,考虑下面这种情况,你需要确认一个URL是否指向一个恶意网站,这种需求可能会有很多。如果我们把所有恶意网站的URL缓存起来,那么会占用很大的空间。或者另一种情况,需要确认用户输入的字符串是包含了美国的地名。像“华盛顿的博物馆”——在这个字符串中,华盛顿是美国的一个地名。我们应该把美国所有的地名保存在内存中然后再查询吗?那样的话缓存会有多大?是否能在不使用数据库的前提下来高效地完成?
这就是为什么我们要跨越基本的数据结构map,在更高级的数据结构像布隆过滤器(bloomfilter)中来寻找答案。你可以把布隆过滤器看做Java中的集合(collection),你可以往它里面添加元素,查询某个元素是否存在(就像一个HashSet)。如果布隆过滤器说没有这个元素,这个结果可能是错误的。如果我们在设计布隆过滤器时足够细心,我们可以把这种出错的概率控制在可接受范围内。
解释
布隆过滤器被设计为一个具有N的元素的位数组A(bit array),初始时所有的位都置为0.
添加元素
要添加一个元素,我们需要提供k个哈希函数。每个函数都能返回一个值,这个值必须能够作为位数组的索引(可以通过对数组长度进行取模得到)。然后,我们把位数组在这个索引处的值设为1。例如,第一个哈希函数作用于元素I上,返回x。类似的,第二个第三个哈希函数返回y与z,那么:
1
|
A[x]=A[y]=A[z] =
1
|
查找元素
查找的过程与上面的过程类似,元素将会被会被不同的哈希函数处理三次,每个哈希函数都返回一个作为位数组索引值的整数,然后我们检测位数组在x、y与z处的值是否为1。如果有一处不为1,那么就说明这个元素没有被添加到这个布隆过滤器中。如果都为1,就说明这个元素在布隆过滤器里面。当然,会有一定误判的概率。
算法优化
通过上面的解释我们可以知道,如果想设计出一个好的布隆过滤器,我们必须遵循以下准则:
- 好的哈希函数能够尽可能的返回宽范围的哈希值。
- 位数组的大小(用m表示)非常重要:如果太小,那么所有的位很快就都会被赋值为1,这样就增加了误判的几率。
- 哈希函数的个数(用k表示)对索引值的均匀分配也很重要。
计算m的公式如下:
1
|
m = - nlog p / (log2)^
2
;
|
这里p为可接受的误判率。
计算k的公式如下:
1
|
k = m/n log(
2
) ;
|
这里k=哈希函数个数,m=位数组个数,n=待检测元素的个数(后面会用到这几个字母)。
哈希算法
哈希算法是影响布隆过滤器性能的地方。我们需要选择一个效率高但不耗时的哈希函数,在论文《更少的哈希函数,相同的性能指标:构造一个更好的布隆过滤器》中,讨论了如何选用2个哈希函数来模拟k个哈希函数。首先,我们需要计算两个哈希函数h1(x)与h2(x)。然后,我们可以用这两个哈希函数来模仿产生k个哈希函数的效果:
1
|
gi(x) = h1(x) + ih2(x);
|
这里i的取值范围是1到k的整数。
Google guava类库使用这个技巧实现了一个布隆过滤器,哈希算法的主要逻辑如下:
1
2
3
4
5
6
7
8
|
long
hash64 = …;
//calculate a 64 bit hash function
//split it in two halves of 32 bit hash values
int
hash1 = (
int
) hash64;
int
hash2 = (
int
) (hash64 >>>
32
);
//Generate k different hash functions with a simple loop
for
(
int
i =
1
; i <= numHashFunctions; i++) {
int
nextHash = hash1 + i * hash2;
}
|
应用
从数学公式中,我们可以很明显的知道使用布隆过滤器来解决问题。但是,我们需要很好地理解布隆过滤器所能解决问题的领域。像我们可以使用布隆过滤器来存放美国的所有城市,因为城市的数量是可以大概确定的,所以我们可以确定n(待检测元素的个数)的值。根据需求来修改p(误判概率)的值,在这种情况下,我们能够设计出一个查询耗时少,内存使用率高的缓存机制。
实现
Google Guava类库有一个实现,查看这个类的构造函数,在这里面需要设置待检测元素的个数与误判率。
1
2
3
4
5
6
7
|
import
com.google.common.hash.BloomFilter;
import
com.google.common.hash.Funnels;
//Create Bloomfilter
int
expectedInsertions = ….;
double
fpp =
0.03
;
// desired false positive probability
BloomFilter<CharSequence> bloomFilter = BloomFilter.create(Funnels.stringFunnel(Charset.forName(
"UTF-8"
)), expectedInsertions,fpp)
|