虽然老师说,密码学最后一道题的第三问出错了,但是他还说,“那个问题能做,只是你们的功力不够深厚”。
经过一番思考后,我认为,做不了。因为之所以最后一道题出问题,是因为老师没考虑到加法的结果是取模运算之后的,也就是加密完的密文 ,是经过取余之后得到的。
于是想到了离散对数问题,求一个对数很简单,但是离散对数也是因为做完N次方之后进行了模运算,所以我感觉这道题做不了,因为求解出加法取余的难度应该和求解离散对数一样。离散对数至今没什么好方法,所以这道题也做不了。
可是老师还是坚持说能做,还说到了素数群。于是给自己拟定了一个小计划,就是在之后的一个月空闲时间内,复习之余,多看看数学,就当备考考研了 ,也顺便证明一下老师的错误 ,就相当于当初证明老师的方法解不出来第九题一样,尽力而为吧 ,操作系统考完了,但是学习还没有结束~
操作系统中很多地方是可以改进的,比如说代码的长度问题,操作系统中的每句话都是反复斟酌的,但是能否找到这样的一个数学的函数,代替schedule呢?
可以把当前所有PID当作输入,输出一个PID ,定义域和值域是一样的,随机性好办,但是要把公平性表现出来就很复杂了,需要找到这样一个函数应该很难,需要很渊博的只是才行。
其实操作系统这个很工程的东西,要是能把理论上的数学证明可以引进去,应该可以得到意想不到的结果。试想一下 ,几十行的代码,用两个数学函数就代替了,那样的话代码量就减小了很多倍。是不是可以将一个600M的系统压缩到几十M?
不过操作系统很庞大,当初的做法就很少用到数学知识,貌似只是在文件系统上面用到了散列而已。虽然只有很少,不过LINUS已经很伟大了,毕竟这点散列也是很难想到的。
操作系统和数学的结合会是一个很漫长的过程,也许将来谁还能证明一下这是个NP问题,那就这些就真是意淫了.
这学期挺忙的,不过很充实,遇到了李老师是一件很幸运的事 ,让大家都学到了很多东西,我想操作系统不只是交会我们怎么做实验,怎么考试,而是让我们对它产生了热情。
再次膜拜一下