【JZOJ5036】【NOI2017模拟3.30】原谅

任务

终其一生,我们在寻找一个原谅。
犯下了太多错,要原谅的那个人,永远都是自己。
Samjia在深夜中望见了没有边界的人生,他没有想到过自己犯下了这么多的错误,他想在他的一生中寻求一个原谅。
他的人生是一个没有边界的平面,平面上有n个错误,每个错误是一个点,每个点i有一定的坐标(x[i],y[i]),有一个参数p 表示每个点有p的概率出现在平面上,注意两个不同的点的出现互相没有影响,Samjia可以在两个点之间连一条线段,两条线段不能在除了端点以外的地方相交,现在Samjia想知道他最多可以连的线段数的期望。
温馨提示:请看最后面的提示:)
本题的答案在mod 100000007意义下计算

对于100%的数据,1<=n<=1000
坐标的绝对值小于等于10^4
保证0<=p<100000007

欧拉公式
在一个平面图内,设点数为V,边数为E,有界面数为F
一定满足:V+F-E=1

解法

首先我们当然是先考虑:
给出若干个点,我们怎样连线段会最多。
通过手试数据,我们发现先给这些点做个凸包,再将凸包上的任意一点往凸包上的另外n-3个点连线。
这里写图片描述
然后我们发现凸包内的点都会有三条线段的贡献。
于是,设点数为 V ,边数为E,有界面数为 F ,凸包上有k个点。
那么就有 2E=3F+k ,因为不在凸包上的边会被有界面覆盖两次,而每个有界面会覆盖三条边。
代入欧拉公式,就有:

2EE=3+3E3V+k=3Vk3(1)

接下来因为我们要求 e[E] ,所以我们有 e[E]=3e[V]e[k]3
e[V]=p=np ,因为每个点都有 p 的概率为e[V]贡献 1
关键是我们要求e[k],也即 点在凸包上的期望数量


我们可以将其转化为,有向线段在凸包上的期望数量
我们先枚举一个点 st ,然后枚举另一个点 en ,那么对于 (st,en) 这条有向线段而言,
这里写图片描述
如果要让它在凸包上,那么图中圈起来的点都不能出现。
那么 (st,en) 在凸包上的概率就是: (1p)xp2 ,其中 x 是在有向线段右手方向的点数。
通过极角排序,我们可以动态O(n)维护向线段右手方向的点数


最后我们发现当所有点都不选时,用 (1) 式会多算一个 3
所以最终答案要加回 (3)(1p)n

代码

#include<iostream>
#include<algorithm>
#include<stdio.h>
#include<math.h>
#include<string.h>
#define ll long long
#define db double
using namespace std;
const ll inf=0x7fffffff;
const char* fin="forgive.in";
const char* fout="forgive.out";
const db eps=10e-5;
const ll maxn=1007,mo=100000007;
ll n,m,i,j,k,ans;
ll equ(db a,db b){return fabs(a-b)>eps?(a>b?1:-1):0;}
ll qpower(ll a,ll b){
    ll c=1;
    while (b){
        if (b&1) c=c*a%mo;
        a=a*a%mo;
        b>>=1;
    }
    return c;
}
struct P{
    db x,y;
    P(db _x=0,db _y=0){x=_x;y=_y;}
    P operator -(const P &b)const{return P(x-b.x,y-b.y);}
    db operator ^(const P &b)const{return (x*b.y-y*b.x);}
}a[maxn],b[maxn];
db arg(P a){return atan2(a.y,a.x);}
bool cmp(P a,P b){return arg(a)<arg(b);}
int main(){
    freopen(fin,"r",stdin);
    freopen(fout,"w",stdout);
    scanf("%lld%lld",&n,&m);
    for (i=1;i<=n;i++) scanf("%lf%lf",&a[i].x,&a[i].y);
    ans=3*n*m%mo-3;
    for (i=1;i<=n;i++){
        ll N=0;
        for (j=1;j<=n;j++) if (i!=j) b[++N]=a[j]-a[i];
        sort(b+1,b+N+1,cmp);
        k=1;
        ll num=2;
        for (j=1;j<=N;j++){
            while (k%N+1!=j && equ(b[k%N+1]^b[j],0)<=0){
                k=k%N+1;
                num++;
            }
            ans=(ans-(m*m%mo*qpower(1-m,n-num)%mo))%mo;
            if (num>2) num--;else k=k%N+1;
        }
    }
    ans=(ans+3*qpower(1-m,n))%mo;
    ans=(ans%mo+mo)%mo;
    printf("%lld",ans);
    return 0;
}

提示

在维护右手向的点数时,如果右手向根本就没点,就不用使点数-1。

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值