题目描述
只要一个由 N×M 个小方块组成的旗帜符合如下规则,就是合法的图案。
- 从最上方若干行(至少一行)的格子全部是白色的;
- 接下来若干行(至少一行)的格子全部是蓝色的;
- 剩下的行(至少一行)全部是红色的;
现有一个棋盘状的布,分成了 N 行 M 列的格子,每个格子是白色蓝色红色之一,小 a 希望把这个布改成合法图案,方法是在一些格子上涂颜料,盖住之前的颜色。
小 A 很懒,希望涂最少的格子,使这块布成为一个合法的图案。
输入格式
第一行是两个整数 N,M。
接下来 N 行是一个矩阵,矩阵的每一个小方块是 W
(白),B
(蓝),R
(红)中的一个。
输出格式
一个整数,表示至少需要涂多少块。
输入输出样例
输入 #1复制
4 5 WRWRW BWRWB WRWRW RWBWR
输出 #1复制
11
说明/提示
样例解释
目标状态是:
WWWWW
BBBBB
RRRRR
RRRRR
一共需要改 11 个格子。
数据范围
对于 100% 的数据,N,M≤50。
代码:
#include <bits/stdc++.h>
#define MX 55
using namespace std;
//一个深度优先搜索的问题
char a[MX][MX];
int main() {
int n,m;
cin>>n>>m;
for(int i = 1;i <= n;i++)
{
for(int j = 1;j <= m;j++)
{
cin>>a[i][j];
}
}
int w[MX],b[MX],r[MX];
w[0] = 0;
b[0] = 0;
r[0] = 0;
for(int i = 1;i <= n;i++)
{
w[i] = w[i-1];
b[i] = b[i-1];
r[i] = r[i-1];
for(int j = 1;j <= m;j++)
{
if(a[i][j] == 'W')
{
w[i]++;
}
else if(a[i][j] == 'B')
{
b[i]++;
}
else{
r[i]++;
}
}
}
int cnt = 2e8;
//枚举两个边界
for(int i = 1;i<n;i++)
{
for(int j = i+1;j<=n;j++)
{
cnt = min(cnt,r[j] + w[n] - w[i] + b[i] + b[n] - b[j]);
}
}
cout<<cnt<<endl;
return 0;
}