第1次实验——NPC问题(回溯算法、聚类分析)

(1)N皇后问题

public class Queen_Java {
	int QUEEN_COUNT = 4; // 是多少皇后
	static final int EMPTY = 0;
	int[][] count = new int[QUEEN_COUNT][QUEEN_COUNT];
	int[] QueenIndex = new int[QUEEN_COUNT];
	int resultCount = 0;
	long time = System.currentTimeMillis();

	public void putQueenIndex(int row) {
		for (int col = 0; col < QUEEN_COUNT; col++) {
			if (count[row][col] == EMPTY) {
				for (int iRow = row + 1; iRow < QUEEN_COUNT; iRow++) {
					count[iRow][col]++;
					if ((col - iRow + row) >= 0) {
						count[iRow][col - iRow + row]++;
					}
					if ((col + iRow - row) < QUEEN_COUNT) {
						count[iRow][col + iRow - row]++;
					}
				}
				QueenIndex[row] = col;
				if (row == QUEEN_COUNT - 1) {
					print(++resultCount);
				} else {
					putQueenIndex(row + 1);
				}
				for (int iRow = row + 1; iRow < QUEEN_COUNT; iRow++) {
					count[iRow][col]--;
					if ((col - iRow + row) >= 0) {
						count[iRow][col - iRow + row]--;
					}
					if ((col + iRow - row) < QUEEN_COUNT) {
						count[iRow][col + iRow - row]--;
					}
				}
			}
		}
		if (row == 0) {
			System.out.println(QUEEN_COUNT + "皇后共有 " + resultCount + " 个解\n"
					+ (System.currentTimeMillis() - time) + "毫秒");
		}
	}

	public void print(int n) {
		System.out.println(QUEEN_COUNT + "皇后的第 " + n + " 个解:");
		for (int i = 0; i < QUEEN_COUNT; i++) {
			for (int j = 0; j < QUEEN_COUNT; j++) {
				System.out.print(QueenIndex[i] == j ? " * " : " - ");
			}
			System.out.println();
		}
		System.out.println();
	}

	public static void main(String[] args) {
		new Queen_Java().putQueenIndex(0);
	}
}

运行结果:



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值