数据结构(八)栈

1、算法

栈是后入先出的规则,在代码实现的时候,构造栈链表的时候,节点指向前面的节点,而队列节点指向后面的节点,以便出栈的时候,代码实现方便。

2、代码示例

#ifndef DATA_STRUCT_STACK_H
#define DATA_STRUCT_STACK_H
#include <iostream>
using namespace std;
class Stack{
    class node{//链表节点
    public:
        node(int tvalue)
        {
            value=tvalue;
            pre=NULL;
        };
        ~node(){};
        node* pre;//区别
        int value;

    };
public:
    Stack(){
        qhead=NULL;
        qrear=NULL;
    };
    ~Stack(){};

    //队列四大元素
    node* qhead;//队头
    node* qrear;//队尾


    void push(int value)//插入元素的时候,主要是更新栈尾
    {
        node * n1=new node(value);
        if(!qhead){
            qhead=n1;
            qrear=n1;
            return;
        }

        n1->pre=qrear;//需要注意这个地方与队列的区别
        qrear=n1;
    }
    node * pop(){//出栈的时候,主要是更新栈尾
        if (!qrear)
        {
            return NULL;
        }

        node* temp=qrear;
        qrear=qrear->pre;

        return temp;
    }

    bool empty(){//队列弹出,要判断是否队列已经为空
        return !qrear;
    }

    void main(){//用于测试
        int data[10]={1,2,3,4,5,6,7,8,9,10};
        for (int i = 0; i <10 ; ++i) {
            push(data[i]);
        }

        while(!empty())
        {
            node* n=pop();
            std::cout<<n->value<<std::endl;
            delete n;
        }


    }

};

#endif //DATA_STRUCT_STACK_H



皇后问题是一个经典的回溯算法问题,它要求在一个8×8的棋盘上放置8个皇后,使得任意两个皇后都不能处于同一行、同一列或同一对角线上。下面是解决皇后问题的一种方法: 1. 定义一个长度为8的数组board,用于表示棋盘的状态。数组的索引表示行号,数组的值表示该行皇后所在的列号。 2. 定义一个递归函数solve,用于尝试在当前行放置皇后。函数的参数为当前行号row。 3. 在solve函数中,首先判断如果row等于8,说明已经成功放置了8个皇后,将当前的棋盘状态加入结果集中。 4. 否则,遍历当前行的每一列,尝试将皇后放置在该列上。如果当前位置满足条件(不与已放置的皇后冲突),则将该位置的列号存入board数组,并递归调用solve函数处理下一行。 5. 在递归调用solve函数之后,需要将board数组恢复为原来的状态,以便尝试其他的列。 6. 最后,定义一个空的结果集res,调用solve函数开始求解皇后问题。 下面是Python代码示例: ```python def solve(row, board, res): if row == 8: res.append(board[:]) return for col in range(8): if is_valid(row, col, board): board[row] = col solve(row + 1, board, res) board[row] = -1 def is_valid(row, col, board): for i in range(row): if board[i] == col or abs(board[i] - col) == abs(i - row): return False return True board = [-1] * 8 res = [] solve(0, board, res) for solution in res: print(solution) ``` 这段代码使用回溯法求解皇后问题,将所有的解存储在结果集res中,并逐个打印出来。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值