OpenRoads Designer超高规则编辑对话框:超高过渡段选项设置

本文介绍了OpenRoads Designer中超高规则编辑对话框的设置,包括Runout和Transition Options,详细解析了Runoff Length、Runout Length、Transition Length等概念,以及如何根据《公路路线设计规范》进行设置。超高过渡段长度的计算、缓和曲线的影响、Start Inside Lane Rotation with Outside选项的作用,以及Interpolate Table的插值选择,都是关键讨论点。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

超高规则编辑对话框:超高过渡段选项(Runout and Transition Options)对话框设置如下图:

Runout and Transition Options这一栏主要是设置超高过渡段的实现方式。在此之前,我们先了解下面的基本概念:

  • Runoff Length:指横坡从0%过渡到全超高所需要的长度。

  • Runout Length:指从正常路拱过渡到0%横坡值所需要的长度。

超高过渡段长度指的是正常路拱过渡到全超高所需要的长度。

即Transition Length = Runout Length +Runoff Length,美国路线规范的超高过渡段仅包含Runoff Length,我想这应该是软件把Runout 和 Transition分开来说的原因。

《公路路线设计规范》(JTG D20-2017)(以下简称 规范)对超高过渡的规定:

7.5.6 超高过渡宜在回旋线全长范围内进行。当回旋线较长时,其超高过渡段应设在回旋线的某一区段范围内,超高过渡段的纵向渐变率不得小于1/330,全超高断面宜设在缓圆点或圆缓点处。

7.5.7 超高过渡段宜采用线性过渡方式。

规范中并没有规定从正常路拱过渡到0%横坡值所需要的长度为固定值,所以Runout Options下面的Fixed Length不勾选。

Non-Linear curve length:当Transition type不是线性(Linear)时会用到。

Present on tangent只有在没有缓和曲线,下面的Use Spiral Length 不勾选的情况下使用。

我们以下面的例子加以说明。

这段路线没有缓和曲线,并且超高过渡段长度是从正常路拱变化到全超高所需长度。那么我们需要设置Percent on Tangent 为0.8,并且把下面的Lengths are Total Transition勾上。如果超高过渡段长度是Runoff Length(从0%横坡变化到全超高所需长度),那么,Lengths are Total Transition不勾选。

Use Spiral Length:

  • 勾选:超高过渡段长度为缓和曲线长;如果路线没有缓和曲线,超高过渡段长度需要计算。

  • 不勾选:超高过渡段长度需要计算。

Start Inside Lane Rotation with Outside:

这个选项决定超高过渡方式。

  • 勾选:内侧车道和外侧车道在同一桩号位置旋转,整个过程中,内侧车道和外侧车道不在一个平面上。

  • 不勾选:外侧车道先旋转,达到反向路拱,此时内侧车道和外侧车道在一个平面上,然后内侧车道随外侧车道一起旋转。

Interpolate Table:

确定表格插值的取值。比如下面不同半径下超高的取值。

  • 勾选:按插值取值。
  • 不勾选:直接取大值。

Radius不勾选勾选
30006.40%6.24%
25007.20%7.15%
分数阶傅里叶变换(Fractional Fourier Transform, FRFT)是对传统傅里叶变换的拓展,它通过非整数阶的变换方式,能够更有效地处理非线性信号以及涉及时频局部化的问题。在信号处理领域,FRFT尤其适用于分析非平稳信号,例如在雷达、声纳和通信系统中,对线性调频(Linear Frequency Modulation, LFM)信号的分析具有显著优势。LFM信号是一种频率随时间线性变化的信号,因其具有宽频带和良好的时频分辨率,被广泛应用于雷达和通信系统。FRFT能够更精准地捕捉LFM信号的时间和频率信息,相比普通傅里叶变换,其性能更为出色。 MATLAB是一种强大的数值计算和科学计算工具,拥有丰富的函数库和用户友好的界面。在MATLAB中实现FRFT,通常需要编写自定义函数或利用信号处理工具箱中的相关函数。例如,一个名为“frft”的文件可能是用于执行分数阶傅里叶变换的MATLAB脚本或函数,并展示其在信号处理中的应用。FRFT的正确性验证通常通过对比变换前后信号的特性来完成,比如评估信号的重构质量、信噪比等。具体而言,可以通过计算原始信号与经过FRFT处理后的信号之间的相似度,或者对比LFM信号的关键参数(如初始频率、扫频率和持续时间)是否在变换后得到准确恢复。 在MATLAB代码实现中,通常包含以下步骤:首先,生成LFM信号模型,设定其初始频率、扫频率、持续时间和采样率等参数;其次,利用自定义的frft函数对LFM信号进行分数阶傅里叶变换;接着,使用MATLAB的可视化工具(如plot或imagesc)展示原始信号的时域和频域表示,以及FRFT后的结果,以便直观对比;最后,通过计算均方误差、峰值信噪比等指标来评估FRFT的性能。深入理解FRFT的数学原理并结合MATLAB编程技巧,可以实现对LFM信号的有效分析和处理。这个代码示例不仅展示了理论知识在
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

测量老覃

感谢您的支持!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值