讲道理 | Principal stress and Principal strain

原文来自:https://en.wikiversity.org/wiki/Introduction_to_Elasticity/Principal_stresses

https://en.wikiversity.org/wiki/Introduction_to_Elasticity/Principal_strains                

 

Principal stress

The principal stresses are the components of the stress tensor when the basis is changed in such a way that the shear stress components become zero. To find the principal stresses in two dimensions, we have to find the angle {\displaystyle \textstyle \theta } at which {\displaystyle \textstyle \sigma _{12}^{'}=0}. This angle is given by

{\displaystyle \theta ={\cfrac {1}{2}}\tan ^{-1}\left({\frac {2\sigma _{12}}{\sigma _{11}-\sigma _{22}}}\right)}

Plugging {\displaystyle \textstyle \theta } into the transformation equations for stress we get,

{\displaystyle {\begin{aligned}\sigma _{1}&={\frac {\sigma _{11}+\sigma _{22}}{2}}+{\sqrt {\left({\frac {\sigma _{11}-\sigma _{22}}{2}}\right)^{2}+\sigma _{12}^{2}}}\end{aligned}}}

Where are the shear tractions usually zero in a body?

The principal stresses in three dimensions are a bit more tedious to calculate. They are given by,

{\displaystyle {\begin{aligned}\sigma _{1}&={\frac {I_{1}}{3}}+{\frac {2}{3}}\left({\sqrt {I_{1}^{2}-3I_{2}}}\right)\cos \phi \\\sigma _{2}&={\frac {I_{1}}{3}}+{\frac {2}{3}}\left({\sqrt {I_{1}^{2}-3I_{2}}}\right)\cos \left(\phi -{\frac {2\pi }{3}}\right)\\\sigma _{3}&={\frac {I_{1}}{3}}+{\frac {2}{3}}\left({\sqrt {I_{1}^{2}-3I_{2}}}\right)\cos \left(\phi -{\frac {4\pi }{3}}\right)\end{aligned}}}

where,

{\displaystyle {\begin{aligned}\phi &={\cfrac {1}{3}}\cos ^{-1}\left({\frac {2I_{1}^{3}-9I_{1}I_{2}+27I_{3}}{2(I_{1}^{2}-3I_{2})^{3/2}}}\right)\\I_{1}&=\sigma _{11}+\sigma _{22}+\sigma _{33}\\I_{2}&=\sigma _{11}\sigma _{22}+\sigma _{22}\sigma _{33}+\sigma _{33}\sigma _{11}-\sigma _{12}^{2}-\sigma _{23}^{2}-\sigma _{31}^{2}\\I_{3}&=\sigma _{11}\sigma _{22}\sigma _{33}-\sigma _{11}\sigma _{23}^{2}-\sigma _{22}\sigma _{31}^{2}-\sigma _{33}\sigma _{12}^{2}+2\sigma _{12}\sigma _{23}\sigma _{31}\end{aligned}}}

The quantities {\displaystyle \textstyle I_{1},I_{2},I_{3}} are the stress invariants.

Note: Be careful while implementing above relations in a solver, as the value of:

{\displaystyle {\frac {2I_{1}^{3}-9I_{1}I_{2}+27I_{3}}{2(I_{1}^{2}-3I_{2})^{3/2}}}}

can be out of range of {\displaystyle \cos ^{-1}}, which is (-1, 1).

 

Principal strain

The principal values (eigenvalues{\displaystyle \textstyle \varepsilon _{1},\varepsilon _{2},\varepsilon _{3}} of a strain tensor {\displaystyle \textstyle {\boldsymbol {\varepsilon }}} are called the principal strains.

If the corresponding principal directions (eigenvectors) are {\displaystyle \textstyle \mathbf {n} _{1},\mathbf {n} _{2},\mathbf {n} _{3}}, then

{\displaystyle {\boldsymbol {\varepsilon }}=\sum _{i=1}^{3}\varepsilon _{i}~\mathbf {n} _{i}\otimes \mathbf {n} _{i}}

is called the spectral decomposition of {\displaystyle \textstyle {\boldsymbol {\varepsilon }}}.

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值