CodeForces - 813

就先写了CD两个题orz

 

C- The Tag Game

题意在一棵树上AB玩追逐游戏,A开始时在节点1,B在节点X

两人轮流操作,B先手,每次操作可以选择移动到相邻格子或者原地不动

A想要尽快抓到B而B想尽量逃的久一点,问多少轮【B操作一下A操作一下是两轮】后B会被A抓到

 

答案就是A操作的数目乘2,我们把节点1当成根,那么B能逃到的离根最远的节点就是他被抓到的定点

但B也可以向根移动一定的步数,再走到别的子树来使得被抓到的节点尽量的远

计算下这个能向上移动的距离d就等于 节点X的深度-1再整除2

那么我们DFS一下用一个dep记录节点深度,depp节点记录当前节点最多还能向下走几步,fa记录节点的父节点

用深度算出向上移动步数,转移到目标节点x'后最远的距离就等于dep[x']+depp[x']

没啥难度就是怎么优雅的A题的问题。。。。

#include<bits/stdc++.h>
#define maxn 200009
using namespace std;

struct ed{
	int v,next;
}edge[2*maxn];
int head[maxn],x,n,tot,dep[maxn],fa[maxn],depp[maxn];

void addedge(int u,int v){
	edge[tot].v=v;
	edge[tot].next=head[u];
	head[u]=tot;
	tot++;
}

int dfs(int u,int v){
    dep[v]=dep[u]+1;
    fa[v]=u;
     
    for (int i=head[v];i!=-1;i=edge[i].next){
    	if (edge[i].v==u)continue;
    	int lin2dep=dfs(v,edge[i].v);
    	if (lin2dep>depp[v])depp[v]=lin2dep; 
	}
	depp[v]+=1;
    return depp[v];
}

int main(){
	memset(head,-1,sizeof(head));
	memset(depp,-1,sizeof(depp));
	tot=0;
	
	scanf("%d%d",&n,&x);
	int u,v;
	for (int i=1;i<n;i++){
		scanf("%d%d",&u,&v);
		addedge(u,v);
		addedge(v,u);
	}
	
	dep[0]=-1;
	dfs(0,1);
	
	//for (int i=1;i<=n;i++)printf("*  %d %d\n",dep[i],depp[i]);
	
	int cnt=(dep[x]-1)/2;
	int wei=x;
	while(cnt--){
		wei=fa[wei];
	}
	printf("%d\n",(depp[wei]+dep[wei])*2);
	
	return 0;
	
}

 

D-Two Melodies

 

题意给一个序列a[i],你要其中找两个不相交的子序列,使得两个子序列都满足melody条件,且两个子序列长度和最大,要求输出最长的长度值

melody条件就是序列中的前后两项满足要么两个数差为1,要么差为7的倍数

 

DP题,神仙DP你们怎么什么都会做orz

首先因为数据范围5000所以可以用n^2的二维DP来做

我们定义dp[i][j]表示第一个子序列末尾是i,第二个子序列末尾是j,两个子序列不重合情况下序列的最大长度,

那么我们在更新时怎么保持两个子序列不相交呢?

注意到一点,dp[ i ][ j ] 和dp[ j ][ i ]值是相等的,

那么我们采用枚举 i 更新 j ,并且 j 从i +1开始更新的方法就能保证不重复了【而且每次前头dp[i][j] j<i的部分都是已经求了的】

因为在更新dp[i][j]时,保证 j>i 那么我们新加进来的a[j]肯定不可能在i的序列中出现过

 

那么考虑dp怎么转移

我们更新 dp[i][j], 那么一种状态是 dp[i][0] 然后把 a[j]放到第二个首部

一种状态是 从  a[j]-1,a[j]+1 转移过来

一种状态是从某个和a[j]相差7的倍数的数转移过来 【a[j]%7 == a[ j']%7】

然后为了减少复杂度我们维护一个maxmod 和 maxnum 数组 存%7 和 相差1 状况下最大的长度数值,

每次更新dp[i][j]后更新数组和dp[j][i];

详细看代码

#include<bits/stdc++.h>
using namespace std;
const int maxm =5e3+10;
const int maxn =1e5+10;

int a[maxm];
int maxmod[8];
int dp[maxm][maxm],maxnum[maxn];

int main(){
    int n;
	scanf("%d",&n);
	for (int i=1;i<=n;i++)scanf("%d",&a[i]);
	memset(dp,0,sizeof(dp));
	int ans=0;
	
	for (int i=0;i<=n;i++){
		//维护最大值数组
        memset(maxmod,0,sizeof(maxmod));
		memset(maxnum,0,sizeof(maxnum));
		for (int j=1;j<=i;j++){
			maxmod[a[j]%7]=max(maxmod[a[j]%7],dp[i][j]);
			maxnum[a[j]]=max(maxnum[a[j]],dp[i][j]);
		}

		for (int j=i+1;j<=n;j++){
	       
		    dp[i][j]=max(dp[i][0]+1,dp[i][j]);
	        dp[i][j]=max(maxmod[a[j]%7]+1,dp[i][j]);
	        dp[i][j]=max(maxnum[a[j]-1]+1,dp[i][j]);
	        dp[i][j]=max(maxnum[a[j]+1]+1,dp[i][j]);
	       
		    maxmod[a[j]%7]=max(maxmod[a[j]%7],dp[i][j]);
	        maxnum[a[j]]  =max(maxnum[a[j]]  ,dp[i][j]);
	        dp[j][i]=dp[i][j];
	        ans =max(ans,dp[i][j]);
		}		
	}	
	printf("%d\n",ans);
	return 0;
}

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值