题目:http://acm.hust.edu.cn/vjudge/problem/19282
题意:
给定一个字符串,求不相同的子串的个数。
分析:
每个子串一定是某个后缀的前缀,那么原问题等价于求所有后缀之间的不相同的前缀的个数。如果所有的后缀按照 suffix(sa[1]), suffix(sa[2]),suffix(sa[3]), …… ,suffix(sa[n])的顺序计算,不难发现,对于每一次新加进来的后缀 suffix(sa[k]),它将产生 n-sa[k]+1 个新的前缀。但是其中有height[k]个是和前面的字符串的前缀是相同的。所以 suffix(sa[k])将“贡献”出 n-sa[k]+1- height[k]个不同的子串。累加后便是原问题的答案。这个做法的时间复杂度为 O(n)。
不相同子串的个数=所有字串的个数-重复子串的个数
重复子串的个数=sum{ height[2~n] }
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
#define rep(i,s,t) for(int i=(s);i<(t);i++)
#define per(i,t,s) for(int i=(t);i>=(s);i--)
const int INF = 1e9 + 9;
const int N = 20000 + 9;
/********************倍增算法*后缀数组模板*******************************/
int sa[N], t1[N], t2[N], c[N], rk[N], height[N];
void build_sa (int s[], int n, int m) {
int i, k, p, *x = t1, *y = t2;
for (i = 0; i < m; i++) c[i] = 0;
for (i = 0; i < n; i++) c[x[i] = s[i]]++;
for (i = 1; i < m; i++) c[i] += c[i - 1];
for (i = n - 1; i >= 0; i--) sa[--c[x[i]]] = i;
for (k = 1; k <= n; k <<= 1) {
p = 0;
for (i = n - k; i < n; i++) y[p++] = i;
for (i = 0; i < n; i++) if (sa[i] >= k) y[p++] = sa[i] - k;
for (i = 0; i < m; i++) c[i] = 0;
for (i = 0; i < n; i++) c[x[y[i]]]++;
for (i = 1; i < m; i++) c[i] += c[i - 1];
for (i = n - 1; i >= 0; i--) sa[--c[x[y[i]]]] = y[i];
swap (x, y);
p = 1;
x[sa[0]] = 0;
for (i = 1; i < n; i++)
x[sa[i]] = y[sa[i - 1]] == y[sa[i]] && y[sa[i - 1] + k] == y[sa[i] + k] ? p - 1 : p ++;
if (p >= n) break;
m = p;
}
}
void getHeight (int s[], int n) {
int i, j, k = 0;
for (i = 0; i <= n; i++) rk[sa[i]] = i;
for (i = 0; i < n; i++) {
if (k) k--;
j = sa[rk[i] - 1];
while (s[i + k] == s[j + k]) k++;
height[rk[i]] = k;
}
}
/********************************************************************************/
int s[N];
char str[N];
int main() {
//freopen ("f.txt", "r", stdin);
int T;
scanf ("%d", &T);
while (T--) {
scanf ("%s", str);
int n = strlen (str);
rep (i, 0, n) s[i] = str[i];
s[n] = 0;
build_sa (s, n + 1, 128);
getHeight (s, n);
int ans = n * (n + 1) / 2;
rep (i, 2, n + 1) ans -= height[i];
printf ("%d\n", ans);
}
return 0;
}