发现窝的博客没有线段树模版题,于是乎摘抄一下《【完全版】线段树》
单点更新:最最基础的线段树,只更新叶子节点,然后把信息用PushUP(int r)这个函数更新上来
hdu1166 敌兵布阵
题意:O(-1)
思路:O(-1)
线段树功能:update:单点增减 query:区间求和
hdu1754 I Hate It
题意:O(-1)
思路:O(-1)
线段树功能:update:单点替换 query:区间最值
hdu1394 Minimum Inversion Number
题意:求Inversion后的最小逆序数
思路:用O(nlogn)复杂度求出最初逆序数后,就可以用O(1)的复杂度分别递推出其他解
线段树功能:update:单点增减 query:区间求和
#include <cstdio>
#include <algorithm>
using namespace std;
#define lson l , m , rt << 1
#define rson m + 1 , r , rt << 1 | 1
const int maxn = 5555;
int sum[maxn<<2];
void PushUP(int rt) {
sum[rt] = sum[rt<<1] + sum[rt<<1|1];
}
void build(int l,int r,int rt) {
sum[rt] = 0;
if (l == r) return ;
int m = (l + r) >> 1;
build(lson);
build(rson);
}
void update(int p,int l,int r,int rt) {
if (l == r) {
sum[rt] ++;
return ;
}
int m = (l + r) >> 1;
if (p <= m) update(p , lson);
else update(p , rson);
PushUP(rt);
}
int query(int L,int R,int l,int r,int rt) {
if (L <= l && r <= R) {
return sum[rt];
}
int m = (l + r) >> 1;
int ret = 0;
if (L <= m) ret += query(L , R , lson);
if (R > m) ret += query(L , R , rson);
return ret;
}
int x[maxn];
int main() {
int n;
while (~scanf("%d",&n)) {
build(0 , n - 1 , 1);
int sum = 0;
for (int i = 0 ; i < n ; i ++) {
scanf("%d",&x[i]);
sum += query(x[i] , n - 1 , 0 , n - 1 , 1);
update(x[i] , 0 , n - 1 , 1);
}
int ret = sum;
for (int i = 0 ; i < n ; i ++) {
sum += n - x[i] - x[i] - 1;
ret = min(ret , sum);
}
printf("%d\n",ret);
}
return 0;
}
hdu2795 Billboard
题意:h*w的木板,放进一些1*L的物品,求每次放空间能容纳且最上边的位子
思路:每次找到最大值的位子,然后减去L
线段树功能:query:区间求最大值的位子(直接把update的操作在query里做了)
练习
poj2828 Buy Tickets
poj2886 Who Gets the Most Candies?
成段更新(通常这对初学者来说是一道坎),需要用到延迟标记(或者说懒惰标记),简单来说就是每次更新的时候不要更新到底,用延迟标记使得更新延迟到下次需要更新or询问到的时候
hdu1698 Just a Hook
题意:O(-1)
思路:O(-1)
线段树功能:update:成段替换 (由于只query一次总区间,所以可以直接输出1结点的信息)
poj3468 A Simple Problem with Integers
题意:O(-1)
思路:O(-1)
线段树功能:update:成段增减 query:区间求和
#include <cstdio>
#include <algorithm>
using namespace std;
#define lson l , m , rt << 1
#define rson m + 1 , r , rt << 1 | 1
#define LL long long
const int maxn = 111111;
LL add[maxn<<2];
LL sum[maxn<<2];
void PushUp(int rt) {
sum[rt] = sum[rt<<1] + sum[rt<<1|1];
}
void PushDown(int rt,int m) {
if (add[rt]) {
add[rt<<1] += add[rt];
add[rt<<1|1] += add[rt];
sum[rt<<1] += add[rt] * (m - (m >> 1));
sum[rt<<1|1] += add[rt] * (m >> 1);
add[rt] = 0;
}
}
void build(int l,int r,int rt) {
add[rt] = 0;
if (l == r) {
scanf("%lld",&sum[rt]);
return ;
}
int m = (l + r) >> 1;
build(lson);
build(rson);
PushUp(rt);
}
void update(int L,int R,int c,int l,int r,int rt) {
if (L <= l && r <= R) {
add[rt] += c;
sum[rt] += (LL)c * (r - l + 1);
return ;
}
PushDown(rt , r - l + 1);
int m = (l + r) >> 1;
if (L <= m) update(L , R , c , lson);
if (m < R) update(L , R , c , rson);
PushUp(rt);
}
LL query(int L,int R,int l,int r,int rt) {
if (L <= l && r <= R) {
return sum[rt];
}
PushDown(rt , r - l + 1);
int m = (l + r) >> 1;
LL ret = 0;
if (L <= m) ret += query(L , R , lson);
if (m < R) ret += query(L , R , rson);
return ret;
}
int main() {
int N , Q;
scanf("%d%d",&N,&Q);
build(1 , N , 1);
while (Q --) {
char op[2];
int a , b , c;
scanf("%s",op);
if (op[0] == 'Q') {
scanf("%d%d",&a,&b);
printf("%lld\n",query(a , b , 1 , N , 1));
} else {
scanf("%d%d%d",&a,&b,&c);
update(a , b , c , 1 , N , 1);
}
}
return 0;
}
poj2528 Mayor’s posters
题意:在墙上贴海报,海报可以互相覆盖,问最后可以看见几张海报
思路:这题数据范围很大,直接搞超时+超内存,需要离散化:
离散化简单的来说就是只取我们需要的值来用,比如说区间[1000,2000],[1990,2012] 我们用不到[-∞,999][1001,1989][1991,1999][2001,2011][2013,+∞]这些值,所以我只需要1000,1990,2000,2012就够了,将其分别映射到0,1,2,3,在于复杂度就大大的降下来了
所以离散化要保存所有需要用到的值,排序后,分别映射到1~n,这样复杂度就会小很多很多
而这题的难点在于每个数字其实表示的是一个单位长度(并非一个点),这样普通的离散化会造成许多错误(包括我以前的代码,poj这题数据奇弱)
给出下面两个简单的例子应该能体现普通离散化的缺陷:
例子一:1-10 1-4 5-10
例子二:1-10 1-4 6-10
普通离散化后都变成了[1,4][1,2][3,4]
线段2覆盖了[1,2],线段3覆盖了[3,4],那么线段1是否被完全覆盖掉了呢?
例子一是完全被覆盖掉了,而例子二没有被覆盖
为了解决这种缺陷,我们可以在排序后的数组上加些处理,比如说[1,2,6,10]
如果相邻数字间距大于1的话,在其中加上任意一个数字,比如加成[1,2,3,6,7,10],然后再做线段树就好了.
线段树功能:update:成段替换 query:简单hash
poj3225 Help with Intervals
题意:区间操作,交,并,补等
思路:
我们一个一个操作来分析:(用0和1表示是否包含区间,-1表示该区间内既有包含又有不包含)
U:把区间[l,r]覆盖成1
I:把[-∞,l)(r,∞]覆盖成0
D:把区间[l,r]覆盖成0
C:把[-∞,l)(r,∞]覆盖成0 , 且[l,r]区间0/1互换
S:[l,r]区间0/1互换
成段覆盖的操作很简单,比较特殊的就是区间0/1互换这个操作,我们可以称之为异或操作
很明显我们可以知道这个性质:当一个区间被覆盖后,不管之前有没有异或标记都没有意义了
所以当一个节点得到覆盖标记时把异或标记清空
而当一个节点得到异或标记的时候,先判断覆盖标记,如果是0或1,直接改变一下覆盖标记,不然的话改变异或标记
开区间闭区间只要数字乘以2就可以处理(偶数表示端点,奇数表示两端点间的区间)
线段树功能:update:成段替换,区间异或 query:简单hash
练习
poj1436 Horizontally Visible Segments
poj2991 Crane
Another LCIS
Bracket Sequence
区间合并
这类题目会询问区间中满足条件的连续最长区间,所以PushUp的时候需要对左右儿子的区间进行合并
poj3667 Hotel
题意:1 a:询问是不是有连续长度为a的空房间,有的话住进最左边
2 a b:将[a,a+b-1]的房间清空
思路:记录区间中最长的空房间
线段树操作:update:区间替换 query:询问满足条件的最左断点
#include <cstdio>
#include <cstring>
#include <cctype>
#include <algorithm>
using namespace std;
#define lson l , m , rt << 1
#define rson m + 1 , r , rt << 1 | 1
const int maxn = 55555;
int lsum[maxn<<2] , rsum[maxn<<2] , msum[maxn<<2];
int cover[maxn<<2];
void PushDown(int rt,int m) {
if (cover[rt] != -1) {
cover[rt<<1] = cover[rt<<1|1] = cover[rt];
msum[rt<<1] = lsum[rt<<1] = rsum[rt<<1] = cover[rt] ? 0 : m - (m >> 1);
msum[rt<<1|1] = lsum[rt<<1|1] = rsum[rt<<1|1] = cover[rt] ? 0 : (m >> 1);
cover[rt] = -1;
}
}
void PushUp(int rt,int m) {
lsum[rt] = lsum[rt<<1];
rsum[rt] = rsum[rt<<1|1];
if (lsum[rt] == m - (m >> 1)) lsum[rt] += lsum[rt<<1|1];
if (rsum[rt] == (m >> 1)) rsum[rt] += rsum[rt<<1];
msum[rt] = max(lsum[rt<<1|1] + rsum[rt<<1] , max(msum[rt<<1] , msum[rt<<1|1]));
}
void build(int l,int r,int rt) {
msum[rt] = lsum[rt] = rsum[rt] = r - l + 1;
cover[rt] = -1;
if (l == r) return ;
int m = (l + r) >> 1;
build(lson);
build(rson);
}
void update(int L,int R,int c,int l,int r,int rt) {
if (L <= l && r <= R) {
msum[rt] = lsum[rt] = rsum[rt] = c ? 0 : r - l + 1;
cover[rt] = c;
return ;
}
PushDown(rt , r - l + 1);
int m = (l + r) >> 1;
if (L <= m) update(L , R , c , lson);
if (m < R) update(L , R , c , rson);
PushUp(rt , r - l + 1);
}
int query(int w,int l,int r,int rt) {
if (l == r) return l;
PushDown(rt , r - l + 1);
int m = (l + r) >> 1;
if (msum[rt<<1] >= w) return query(w , lson);
else if (rsum[rt<<1] + lsum[rt<<1|1] >= w) return m - rsum[rt<<1] + 1;
return query(w , rson);
}
int main() {
int n , m;
scanf("%d%d",&n,&m);
build(1 , n , 1);
while (m --) {
int op , a , b;
scanf("%d",&op);
if (op == 1) {
scanf("%d",&a);
if (msum[1] < a) puts("0");
else {
int p = query(a , 1 , n , 1);
printf("%d\n",p);
update(p , p + a - 1 , 1 , 1 , n , 1);
}
} else {
scanf("%d%d",&a,&b);
update(a , a + b - 1 , 0 , 1 , n , 1);
}
}
return 0;
}
练习
hdu3308 LCIS
hdu3397 Sequence operation
hdu2871 Memory Control
hdu1540 Tunnel Warfare
CF46-D Parking Lot
扫描线
这类题目需要将一些操作排序,然后从左到右用一根扫描线(当然是在我们脑子里)扫过去
最典型的就是矩形面积并,周长并等题
hdu1542 Atlantis
题意:矩形面积并
思路:浮点数先要离散化;然后把矩形分成两条边,上边和下边,对横轴建树,然后从下到上扫描上去,用cnt表示该区间下边比上边多几个,sum代表该区间内被覆盖的线段的长度总和
这里线段树的一个结点并非是线段的一个端点,而是该端点和下一个端点间的线段,所以题目中r+1,r-1的地方可以自己好好的琢磨一下
线段树操作:update:区间增减 query:直接取根节点的值
#include <cstdio>
#include <cstring>
#include <cctype>
#include <algorithm>
using namespace std;
#define lson l , m , rt << 1
#define rson m + 1 , r , rt << 1 | 1
const int maxn = 2222;
int cnt[maxn << 2];
double sum[maxn << 2];
double X[maxn];
struct Seg {
double h , l , r;
int s;
Seg(){}
Seg(double a,double b,double c,int d) : l(a) , r(b) , h(c) , s(d) {}
bool operator < (const Seg &cmp) const {
return h < cmp.h;
}
}ss[maxn];
void PushUp(int rt,int l,int r) {
if (cnt[rt]) sum[rt] = X[r+1] - X[l];
else if (l == r) sum[rt] = 0;
else sum[rt] = sum[rt<<1] + sum[rt<<1|1];
}
void update(int L,int R,int c,int l,int r,int rt) {
if (L <= l && r <= R) {
cnt[rt] += c;
PushUp(rt , l , r);
return ;
}
int m = (l + r) >> 1;
if (L <= m) update(L , R , c , lson);
if (m < R) update(L , R , c , rson);
PushUp(rt , l , r);
}
int Bin(double key,int n,double X[]) {
int l = 0 , r = n - 1;
while (l <= r) {
int m = (l + r) >> 1;
if (X[m] == key) return m;
if (X[m] < key) l = m + 1;
else r = m - 1;
}
return -1;
}
int main() {
int n , cas = 1;
while (~scanf("%d",&n) && n) {
int m = 0;
while (n --) {
double a , b ,c , d;
scanf("%lf%lf%lf%lf",&a,&b,&c,&d);
X[m] = a;
ss[m++] = Seg(a , c , b , 1);
X[m] = c;
ss[m++] = Seg(a , c , d , -1);
}
sort(X , X + m);
sort(ss , ss + m);
int k = 1;
for (int i = 1 ; i < m ; i ++) {
if (X[i] != X[i-1]) X[k++] = X[i];
}
memset(cnt , 0 , sizeof(cnt));
memset(sum , 0 , sizeof(sum));
double ret = 0;
for (int i = 0 ; i < m - 1 ; i ++) {
int l = Bin(ss[i].l , k , X);
int r = Bin(ss[i].r , k , X) - 1;
if (l <= r) update(l , r , ss[i].s , 0 , k - 1, 1);
ret += sum[1] * (ss[i+1].h - ss[i].h);
}
printf("Test case #%d\nTotal explored area: %.2lf\n\n",cas++ , ret);
}
return 0;
}
hdu1828 Picture
题意:矩形周长并
思路:与面积不同的地方是还要记录竖的边有几个(numseg记录),并且当边界重合的时候需要合并(用lbd和rbd表示边界来辅助)
线段树操作:update:区间增减 query:直接取根节点的值
练习
hdu3265 Posters
hdu3642 Get The Treasury
poj2482 Stars in Your Window
poj2464 Brownie Points II
hdu3255 Farming
ural1707 Hypnotoad’s Secret
uva11983 Weird Advertisement
占坑,有空来写N颗更新到底的线段树 2012/7/10
线段树与其他结合练习(欢迎大家补充):
hdu3954 Level up
hdu4027 Can you answer these queries?
hdu3333 Turing Tree
hdu3874 Necklace
hdu3016 Man Down
hdu3340 Rain in ACStar
zju3511 Cake Robbery
UESTC1558 Charitable Exchange
CF85-D Sum of Medians
spojGSS2 Can you answer these queries II