前向算法在HMM模型的训练、解码和评估过程中都涉及到。掌握前向算法对彻底理解HMM非常必要。前向算法掌握之后,后向算法也就不再话下。
首先给出前向算法的公式,然后一步一步解析它的计算过程。
(1)
表示由代表的HMM模型,所有可能的状态下,在t时刻状态为j,且时间片1,2,…,t,产生的观察向量分别为
的概率。现在就是要设计一个算法来计算该数值,并且时间和空间复杂度合理。利用动态规划法,通过一张表记录当前的计算结果,供下一时刻使用,避免了暴力求解的时间消耗。

本文详细解读了HMM模型中前向算法的原理、公式(1)和(2),展示了如何通过动态规划优化计算,包括状态转移矩阵和发射概率的运用,以及从t=2到T的迭代计算过程。最后介绍了351页的《Speech and Language Processing》中关于前向算法的伪代码实现。
最低0.47元/天 解锁文章
1691

被折叠的 条评论
为什么被折叠?



