parameters vs. arguments and call by value vs. call by reference

parameters可以认为是与形参(formal parameter)对应,在函数定义时,用来表示如何处理将来传进来的数据,它需要类型信息。arguments是实参(acturla parameter),当函数调用时,表示传递进去的数据。它的类型必须与函数定义时的parameters相同,否则就是类型不匹配的错误。

例如:def f(x): x*x 这里的x就是parameter,而在定义之后,调用时,a = 2;f(a),那么a就是argument。

parameters可以看作函数的固定属性,它们表征了函数内部的特性,例如如何操作传递进来的参数,实际上起着占位符的作用;arguments是随着函数调用的上下文而变,在代码运行时,占位符将被实际参数的值取代。

这就有一个问题:如何以及何时计算argument的值

在call by value 和call by reference方案里,函数应用都是在进入函数体之前求arguments的值。因此,函数必须能够查询当前arguments的值,并通过赋值语句改变它们的值。

call by value就是在执行函数前,计算argument的值,并且把计算结果绑定到函数内的参数上,通常是在内存中重新分配空间。当函数返回后,这个空间也被收回,也就是说在上例中,a = 2; f(a); 如果在函数内部发生对a的赋值,调用函数f(a)返后,a的值是不变的,还是2。

call by refernce策略有所不同,在argument值的计算过程中,传递进来的不再是值,而是对它们的直接引用,也既是,如果对参数重新赋值,函数调用返回后,在caller的作用域是能看到值的变化。

 def modify(var p, &q) {
     p := 27 # passed by value - only the local parameter is modified
     q := 27 # passed by reference - variable used in call is modified
 }
 
 ? var a := 1
 # value: 1
 ? var b := 2
 # value: 2
 ? modify(a, &b)
 ? a
 # value: 1
 ? b
 # value: 27


深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值