- 一致性 隔离性 持久性 原子性
- ACID
- 强一致,弱一致,最终一致
- 解决方案
两阶段提交
- 存在一个负责协调所有资源的事务管理器
- 第一阶段是询问各个资源是否准备就绪,当有一个不就绪,直接回滚
- 全部就绪后再统一提交
- 存在很多问题
- 同步堵塞,有资源占用的时候会阻塞其他事务
- 事务管理器故障以后,所有事务不可用
- 二阶段提交以后,如果宕机,不能确保数据一致
TCC try confirm cancel
- Try 阶段:尝试执行,完成所有业务检查(一致性), 预留必须业务资源(准隔离性)
- Confirm 阶段:确认执行真正执行业务,不作任何业务检查,只使用 Try 阶段预留的业务资源,Confirm 操作满足幂等性。要求具备幂等设计,Confirm 失败后需要进行重试。
- Cancel 阶段:取消执行,释放 Try 阶段预留的业务资源 Cancel 操作满足幂等性 Cancel 阶段的异常和 Confirm 阶段异常处理方案基本上一致。
- 在 Try 阶段,是对业务系统进行检查及资源预览,比如订单和存储操作,需要检查库存剩余数量是否够用,并进行预留,预留操作的话就是新建一个可用库存数量字段,Try 阶段操作是对这个可用库存数量进行操作。
- 基于 TCC 实现分布式事务,会将原来只需要一个接口就可以实现的逻辑拆分为 Try、Confirm、Cancel 三个接口,所以代码实现复杂度相对较高。
本地消息表
- 有消息生产者与消费者两个角色
- 假设a是消息生产者 b 是消息消费者
- a先操作入库,然后入库消息表,脚本定期轮询消息表放入mq
- b消费mq消息,执行业务
- 如果b产生错误,需要通知a回滚,b拉取消息失败,需要重试,所有需要实现幂等性
- 其实核心就是需要分布式处理的事务存储在一个可以访问的地方,b持续消费这里面的事务
可靠消息最终一致性
- a先向mq发送一条prepare消息,如果发送失败,直接取消操作
- 消息发送成功,执行本地操作
- 本地事务成功后,向mq发送confirm消息,发送失败回滚事务
- b定期消费mq里confirm消息,执行本地事务,并发送ack消息,如果b本地事务失败,会重试,业务失败,向系统a发送回滚请求
- mq会定期轮询prepare消息调用系统a提供的接口查询消息处理情况,如果执行成功,则重试发送confirm,否则回滚
尽最大努力通知
- 最大努力通知适用于对最终一致性时间敏感度低的业务
- 系统a执行完成后,写入mq
- 消费mq,调用b的服务
- 如果执行失败,一直重试,实在不行就放弃