数论初步(最大公约数和最小公倍数)(c++)

最大公约数指能够整除多个整数的最大正整数,而多个整数不能都为零,例如8和12的最大公约数为4;

最小公倍数:两个或多个整数公有的倍数叫做它们的公倍数,其中除0以外最小的一个公倍数就叫做这几个整数的最小公倍数,例如6和24的最小公倍数为24。

什么是最大公约数和最小公倍数?

C语言计算两个数的最大公约数和最小公倍数的方法:

1、计算两个数的最大公约数

根据约数的定义可知,某个数的所有约数必不大于这个数本身,几个自然数的最大公约数必不大于其中任何一个数。要求任意两个正整数的最大公约数即求出一个不大于其中两者中的任何一个,但又能同时整除两个整数的最大自然数。

算法思路:按照从大(两个整数中较小的数)到小(到最小的整数1)的顺序求出第一个能同时整除两个整数的自然数,即为所求。

代码示例:
 

#include<stdio.h>

int main()

{

    int m, n, temp, i;

    printf("请输入任意2个数:\n");

    scanf("%d%d", &m, &n);

    if(m<n)  /*比较大小,使得m中存储大数,n中存储小数*/

    { /*交换m和n的值*/

        temp=m;

        m=n;

        n=temp;

    }

    for(i=n; i>0; i--)  /*按照从大到小的顺序寻找满足条件的自然数*/

        if(m%i==0 && n%i==0)

        {/*输出满足条件的自然数并结束循环*/

            printf("%d 和 %d 的最大公约数为: %d\n", m, n, i);

            break;

        }

    

    return 0;

}

输出:

2.jpg

2、计算两个数的最小公倍数

思路:求任意两个正整数的最小公倍数,即求出一个最小的能同时被两整数整除的自然数。

代码示例:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

#include<stdio.h>

int main()

{

    int m, n, temp, i;

    printf("请输入任意2个数:\n");

    scanf("%d%d", &m, &n);

    if(m<n)  /*比较大小,使得m中存储大数,n中存储小数*/

    { /*交换m和n的值*/

        temp=m;

        m=n;

        n=temp;

    }

    for(i=m; i>0; i++)  /*从大数开始寻找满足条件的自然数*/

        if(i%m==0 && i%n==0)

        {/*输出满足条件的自然数并结束循环*/

            printf("%d 和 %d 的最小公倍数为: %d\n", m, n, i);

            break;

        }

    

    return 0;

}

输出:

3.jpg

最小公倍数也可以使用最大公约数来求,公式:

 ● 最小公倍数=两数的乘积/最大公约(因)数

要点归纳

最大公约数

•几个数公有的约数,叫做这几个数的公约数,其中最大的一个叫做这几个数的最大公约数

•数学上,a和b的最大公约数记为(a, b)

•编程中,计算两个数最大公约数的方法通常记为gcd(a,b)

最小公倍数

•几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个叫做这几个数的最小公倍数

•数学上,a和b的最小公倍数记为[a,b]

•编程中,计算两个数最小公倍数的方法通常记为lcm(a,b)

•a x b = gcd(a, b) x lcm(a,b)

互质

•如果两个数的最大公约数是1,则称这两个数互质

①分解质因数法

例:求24和60的最大公约数与最小公倍数

每个合数都可以写成几个质数相乘的形式

最大公约数是两个数所有公有质因数的乘积

24和60公有的质因数是2、2、3,所以24和60的最大公约数是2x2x3=12

最小公倍数是两个数所有公有质因数和其各自独有质因数的乘积

24和60公有的质因数是2、2、3,24的独有质因数是2,60的独有质因数是5,所以24和60的最小公倍数是2x2x3x2x5=120

②短除法

例:求24和60的最大公约数与最小公倍数

24和60的最大公约数为2x2x3=12(左侧3个数之积)

24和60的最小公倍数为2x2x3x2x5=120(左侧3个数和下面2个数之积)

三个数和两个数的情况不同,请看下面的例子,要仔细体会!

例:求12、30和150的最大公约数与最小公倍数

12、30和150的最大公约数为2x3=6

12、30和150的最小公倍数为2x3x5x2x1x5=300

③辗转相除法(欧几里德算法)

算法步骤:

1.输入两个正整数m, n(m>n)

2. 计算m除以n的余数r

3.m=n, n=r

4. 若r=0, 则m和n的最大公因数等于m;否则转到第2步

5. 输出最大公因数m

例:求24和60的最大公约数与最小公倍数

60 %24 = 12

24 %12 = 0

24和60的最大公约数是12

a x b = gcd(a, b) x lcm(a,b) —》 lcm(a,b) = a x b / gcd(a, b)

24和60的最小公倍数=24x60/12=120

主要代码:

递归:

int gcd(int a, int b){ return (b==0) ? a : gcd(b, a%b); }

非递归:

int gcd(int a, int b){

int t=a%b;

while(t){

a=b;

b=t;

t=a%b;

}

return b;

}

int lcm(inta, int b){ return a/gcd(a, b)*b; }

举个栗子

【NOIP2018初赛普及组c++】

【参考答案】

求最大公约数 查看测评数据信息

读入两个正整数m和n,计算m和n的最大公约数。

输入格式

两个空格隔开的正整数m和n。

输出格

m和n的最大公约数。注意行尾输出换行。

输入/输出例子1

输入:

35 14

输出:

7

#include<bits/stdc++.h>
using namespace std;
long long a,b;
int main(){
    cin>>a>>b;
    for(int i=a;i>=1;i--){
        if(a%i==0&&b%i==0){
            cout<<i;
            break;
        }
    }
    return 0;
}

纸块 查看测评数据信息

把一张长a厘米、宽b厘米的纸裁成同样大小的正方形纸块,而没有剩余。问:能裁成最大的正方形纸块的边长是多少?

输入格式

2个正整数aba<=300b<=300

输出格式

一个整数,能裁成最大的正方形纸块的边长。

输入/输出例子1

输入:

200  160

输出:

40

#include<bits/stdc++.h>
using namespace std;
long long a,b;
int main(){
    cin>>a>>b;
    for(int i=a;i>=1;i--){
        if(a%i==0&&b%i==0){
            cout<<i;
            break;
        }
    }
    return 0;
}

既约分数

如果一个分数的分子和分母的最大公约数是 1,这个分数称为既约分数。
例如,3/4 , 5/2 , 1/8 , 7/1 都是既约分数。
请问,有多少个既约分数,分子和分母都是 1 到 N 之间的整数(包括 1 和 N)?

输入格式

一个整数N,N<=4000

输出格式

一个整数,表示既约分数的个数

输入/输出例子1

输入:

2020

输出:

2481215

#include<bits/stdc++.h>
using namespace std;
int g(int a,int b){
	if(b==0)return a;
	else return g(b,a%b);
}
int main(){
	int n,s=0;
	cin>>n;
	for(int i=1;i<=n;i++)
	   for(int j=1;j<=n;j++)
	      if(g(i,j)==1)s++;
	cout<<s;
	return 0;
}

最小公倍数

给定两个正整数,计算这两个数的最小公倍数。

输入格式

每组只有一行,包括两个不大于1000的正整数。

输出格式

对于每个测试用例,给出这两个数的最小公倍数,每个实例输出一行。

输入/输出例子1

输入:

20 15

输出:

60

#include<bits/stdc++.h>
using namespace std;
int main(){
    int a,b;
    cin>>a>>b;
    for(int i=1;;i++){
        if(i%a==0&&i%b==0){
            cout<<i;
            break;
        }
    }
    
    return 0;
}

秋游活动

学校举行秋游活动。 由于这次秋游活动来的人太多, 学校租了三辆大巴车来把学生运到秋游营地。 但是由于三辆车型号不一样, 所以跑一趟往返所需的时间也不一样。 小明来到停车场时, 正好见到三辆车同时发车。 好奇的他想知道, 如果他在这里等着, 过多久才能看见下一次三辆车同时发车。

输入格式

包含一行三个数, 分别表示每一辆车跑一次往返所需的分钟数(不超过 10000 分钟) , 用空格分开 。

输出格式

包含一个数, 为小明所需等待的时间(分钟数) 。

输入/输出例子1

输入:

4 6 3

输出:

12

#include<bits/stdc++.h>
using namespace std;
long long a,b,c;
int main(){    
    cin>>a>>b>>c;
    for(long long i=a;;i+=a){
        if(i%a==0&&i%b==0&&i%c==0){
            cout<<i;
            return 0;
        }
    }
    
    return 0;
}

最大公约数的简单方法 ( 课程A)

输入2个2000以内的正整数a和b,找到最大的这样正整数X:X可以整除a和b。

输入格式

 一行2个正整数:a和b,范围在[1,2000]。

输出格式

 一个正整数。

输入/输出例子1

输入:

4  6

输出:

2

#include<bits/stdc++.h>
using namespace std;
long long a,b;
int main(){
    cin>>a>>b;
    long long s=__gcd(a,b);
    cout<<s;
    
    return 0;
}

最小公倍数的简单方法 (课程A) 

输入2个2000以内的正整数a和b,找到最小的这样正整数X:X可以被a和b整除。

输入格式

 一行2个正整数:a和b,范围在[1,2000]。

输出格式

 一个正整数。

输入/输出例子1

输入:

 4  6

输出:

12

#include<bits/stdc++.h>
using namespace std;
long long a,b;
int main(){
    cin>>a>>b;
    for(int i=1;;i++){
        if(i%a==0&&i%b==0){
            cout<<i;
            break;
        }
    }
    
    return 0;
}

求 n 个数的最小公倍数 查看测评数据信息

你的好朋友小明最近在学习最小公倍数的知识,他妈妈给他出了100题,每一题都有n(2≤n≤20)个数,要小明求出这n个数的最小公倍数。小明现在想快点出去玩,于是想到会编程的你,能否设计一个程序,让他输入题目n个数就可以得到答案?快来帮帮小明吧!

输入格式

第一行一个整数 n (2≤n≤20)。

第二行 n 个整数。

输出格式

一个整数,表示最小公倍数,数据保证答案不超过int范围。

输出时每行末尾的多余空格,不影响答案正确性

输入/输出例子1

输入:

5

2 4 6 8 10

输出:

120

#include<bits/stdc++.h>
using namespace std;
long long n,a[25];
int main(){
    cin>>n;
    for(int i=0;i<n;i++){
    	cin>>a[i];
	}
	sort(a,a+n);
   	for(int j=n-1;j>0;j--){
   		for(int i=a[j-1];i>0;i--){
   			if(a[j]%i==0&&a[j-1]%i==0){
   				a[j-1]=a[j]*a[j-1]/i;
   				break;
   			}
		}
	}
    cout<<a[0];
    return 0;
}

最大公约数与最小公倍数问题 查看测评数据信息

输入两个正整数x0,y0(2≤x0≤100,2≤y0≤5000),求出满足下列条件的P、Q的个数。

条件1:P、Q是正整数。

条件2:要求P、Q以x0为最大公约数,以y0为最小公倍数。

试求,满足条件的所有可能的两个正整数的个数。

输入/输出例子1

输入:

3 60

输出:

4

样例解释

提示

说明:(不用输出)此时的 P Q 分别为,

3 60

15 12

12 15

60 3

所以,满足条件的所有可能的两个正整数的个数共4种。

#include<bits/stdc++.h>
using namespace std;
int gcd(int a,int b){
	return a%b==0? b:gcd(b,a%b);
}
int main(){
 	int a,b,c,count=0,i=1,j=2;
	cin>>a>>b;
	if(b%a==0){
		c=b/a;
		j=c;
		while(i<j){
			if(c%i==0){
				j=c/i;
				if(gcd(j,i)==1)
					count+=2;		
			}
			i++;
		}
	}
	cout<<count;
	return 0;
}
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值