《离散数学》期末练习题

《离散数学》期末练习题

一、填空题

1、若p,q为二命题,p→q真值为0 当且仅当 。
2、A={1,{2,3}},则幂集P(A) = 。
3、对于公式x(P(x)∨Q(x)),其中P(x):x=1,Q(x):x=2,当个体域为{1,2}时,其真值为_______。
4、无向图为欧拉图的充要条件是 且图是连通的。
5、无向图G=<V,E>如下所示,则Δ(G)=________,δ(G)=__________。
在这里插入图片描述

二、选择题

1、下列语句是命题的为( )。
A、我希望后天是晴天!;
B、;
C、2x>0当且仅当x大于0;
D、我正在说谎。
2、下列各项中,不是公式的是( )。
A、; B、;
C、; D、
3、下列选项中不成立的是( )。
A、若,则;
B、若,则;
C、若,则;
D、若,则。
4、下面各项中能构成图的度数列的是( )。
  A、2,3,4,5,6,7; B、1,2,2,3,4;
C、2,1,1,1,2; D、3,3,5,6,0。
5、下列命题中不正确的是(  )。

6、下列结果正确的是( )。

7、设G是连通平面图,有5个顶点,6个面,则G的边数是( )。
A、9条 B、5条
C、6条 D、11条.
8、设D的顶点数大于1,D=<V,E>是强连通图,当且仅当(  )。
A、D中至少有一条通路
B、D中至少有一条回路
C、D中有通过每个顶点至少一次的通路
D、D中有通过每个顶点至少一次的回路

三、概念题

1、矛盾式(永假式):
2、推理:
3、悬挂顶点与悬挂边:
4、欧拉通路:

四、计算题

1、用等值演算法或真值表法判断公式(p∨(q∧r))→(p∨q∨r)的类型;

2、(1) 已知图G有10条边, 4个3度顶点, 其余顶点的度数均小于等于2, 问G至少有多少个顶点?
(2)已知无向树T中, 有1个3度顶点, 2个2度顶点, 其余顶点全是树叶。试求树叶数。

六、应用题

设有a、b、c、d、e、f、g七个人,他们分别会讲的语言如下:a:英,b:汉、英,c:英、俄、西班牙,d:日、汉,e:德、西班牙,f:法、日、俄,g:法、德,能否将这七个人的座位安排在圆桌旁,使得每个人均能与他旁边的人交谈? (提示:构造无向图,寻找一条Hamilton回路。)

离散数学复习题 1、下列是真命题的有 Φ∈{{Φ},Φ} 2、在0 之间应填入 符号。 3、谓词公式 中的 x是 。 既是自由变元又是约束变元 4、设全集为I,下列相等的集合是 。 5、下面哪个命题公式是永真式 。 6、与命题公式 等价的公式是 。 7、设R,S是集合A上的关系,则下列说法正确的是 。 ③若R,S 是对称的, 则 是对称的; 8、设 ,S上关系R的关系图为 则R具有 性质。 自反性 9、设集合 ,A上的二元关系 不具备关系 性质 自反性 10、在下述公式中是永真式的为 ; 11、命题公式 中极小项的个数为 。 3 12、设 ,则 有 个元素。 8 13、设 ,定义 上的等价关系 则由R产 生的 上一个划分共有 个分块。 4 14、设A={1,2,3},则A上的二元关系有 个。 15、下列语句不是命题的有 。 x=13; 16、设 ,下面哪个命题为假 。 17、设A={1,2,3,4},P(A)(A的幂集)上规定二元系如下 则P(A)/ R= A 18、设 (N:自然数集,E¬¬¬+ 正偶数) 则 。 {2,4} 19、P:你努力,Q:你失败。“除非你努力,否则你将失败”的翻译为 ;“虽然你努力了,但还是失败了”的翻译为 。 ; 21、设A={2,3,4,5,6}上的二元关系 ,则R= (列举法)。 R={,,,,,,,,,,,,,,,,} 22、集合A={ ,{ }}的幂集P(A) = 。 ; 23、设A={,,} , B={,,},则 = 。 = 。 { , , , , ,};{ , }; 24、设|A|=3,则A上有 个二元关系。 29 25、设R为集合A上的等价关系,对 ,集合 = ,称为元素a形成的R等价类, ,因为 。 ; 26、已知集合A和B且|A|=n,|B|=m,求A到B的二元关系数是 。 2mn 27、谓词公式 的前束范式是____________。 ∃x∃y¬P(x)∨Q(y) 28、设全集 则A∩B =__ __, _ ____, __ _____ {2};{4,5};{1,3,4,5} 29、设 ,则 ____________, ____________。 {{c},{a,c},{b,c},{a,b,c}};Φ 30、设A={1,2,3,4},A上关系图为 则 R = 。 {,,,} 31、设A={1,2,3},则A上既不是对称的又不是反对称的关系R= ;A上既是对称的又是反对称的关系R= 。 R={,,};R={,,}
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值