在一条环路上有 n
个加油站,其中第 i
个加油站有汽油 gas[i]
升。
你有一辆油箱容量无限的的汽车,从第 i
个加油站开往第 i+1
个加油站需要消耗汽油 cost[i]
升。你从其中的一个加油站出发,开始时油箱为空。
给定两个整数数组 gas
和 cost
,如果你可以按顺序绕环路行驶一周,则返回出发时加油站的编号,否则返回 -1
。如果存在解,则 保证 它是 唯一 的。
示例 1:
输入: gas = [1,2,3,4,5], cost = [3,4,5,1,2] 输出: 3 解释: 从 3 号加油站(索引为 3 处)出发,可获得 4 升汽油。此时油箱有 = 0 + 4 = 4 升汽油 开往 4 号加油站,此时油箱有 4 - 1 + 5 = 8 升汽油 开往 0 号加油站,此时油箱有 8 - 2 + 1 = 7 升汽油 开往 1 号加油站,此时油箱有 7 - 3 + 2 = 6 升汽油 开往 2 号加油站,此时油箱有 6 - 4 + 3 = 5 升汽油 开往 3 号加油站,你需要消耗 5 升汽油,正好足够你返回到 3 号加油站。 因此,3 可为起始索引。
示例 2:
输入: gas = [2,3,4], cost = [3,4,3] 输出: -1 解释: 你不能从 0 号或 1 号加油站出发,因为没有足够的汽油可以让你行驶到下一个加油站。 我们从 2 号加油站出发,可以获得 4 升汽油。 此时油箱有 = 0 + 4 = 4 升汽油 开往 0 号加油站,此时油箱有 4 - 3 + 2 = 3 升汽油 开往 1 号加油站,此时油箱有 3 - 3 + 3 = 3 升汽油 你无法返回 2 号加油站,因为返程需要消耗 4 升汽油,但是你的油箱只有 3 升汽油。 因此,无论怎样,你都不可能绕环路行驶一周。
提示:
gas.length == n
cost.length == n
1 <= n <= 105
0 <= gas[i], cost[i] <= 104
使用两个嵌套while循环来遍历加油站。外层循环控制起点的选择,内层循环模拟从起点出发经过所有加油站的过程。在内层循环中,通过累加gas[(i+j)%n]和减去cost[(i+j)%n]来计算当前剩余的油量now_gas。如果now_gas小于0,表示无法到达下一个加油站,因此跳出内层循环。如果内层循环执行完毕,说明可以从起点出发经过所有加油站,返回起点的索引i。如果外层循环执行完毕仍未找到合适的起点,则返回-1。
class Solution {
public int canCompleteCircuit(int[] gas, int[] cost) {
int i = 0;
int n = gas.length;
int now_gas = 0;
while(i < n){
int j = 0;
now_gas = 0;
while(j < n){
now_gas = now_gas + gas[(i+j)%n] - cost[(i+j)%n];
if(now_gas < 0){
break;
}
j++;
}
if(j == n){
return i;
}else{
i = i + j + 1;
}
}
return -1;
}
}
整个活,执行时间1100ms
class Solution {
public int canCompleteCircuit(int[] gas, int[] cost) {
int result = -1;
int sum_gas = 0;
int sum_cost = 0;
int now_gas = 0;
int n = gas.length;
for(int i = 0;i < n;i++){
sum_cost += cost[i];
sum_gas += gas[i];
}
if(sum_cost <= sum_gas){
for(int i = 0;i < n;i++){
if(gas[i] < cost[i] || (gas[i] == cost[i] && n > 1)){
continue;
}
now_gas = 0;
int j = 0;
while(now_gas >= 0){
if(j == n){
result = i;
break;
}
now_gas = now_gas + gas[(i+j)%n] - cost[(i+j)%n];
j++;
}
}
}
return result;
}
}