1.顺时针打印矩阵(剑指offer-20)
题目:给定一个矩阵,从外向内顺时针打印矩阵中的每一个数字。例如:给定矩阵:
1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16
输出应该为:{1,2,3,4,8,12,16,15,14,13,9,5,6,7,11,10}
解析:
1.循环条件怎么判定?一个矩阵,给定起点(startX,startY)和终点(endX,endY)(即位于对角线上的两个点)就可以打印一周,然后向里进一周(即++startX,++startY,--endX,--endY)即可,如果起始点坐标<终止点坐标(即startX<endX或者startY<endY)循环结束。
2.给定起点和终点,打印一周的结束条件是什么?我画了三种情况的矩阵4×4矩阵,3×5矩阵,5×3矩阵(所有矩阵无非就这三种类型,正方形的,偏“胖”的,偏“瘦”的),很快发现,只有三种情况:一直循环到结束,只剩下一行,只剩下一列。所以我们的函数首先判定:只有一行?打印该行;只有一列,打印该列。都不是,打印四条边上的数字。
// 给定矩阵,给定行列,由外向内顺时针打印数字
public static void PrintMatrixClockwisely(int[][] matrix, int rows,
int columns) {
if (matrix == null || rows < 0 || columns < 0)
return;
int startX = 0;
int startY = 0;
int endX = rows - 1;
int endY = columns - 1;
while (true) {
if (startX > endX && startY > endY)
break;
if (startX == endX && startY > endY)
break;
if (startX > endX && startY == endY)
break;
PrintMatrixCircle(matrix, startX, startY, endX, endY);
++startX;
++startY;
--endX;
--endY;
}
}
// 对于给定矩阵,给定对角线上两点,打印这一周的元素
public static void PrintMatrixCircle(int[][] num, int sX, int sY, int eX,
int eY) {
// 只有一行的情况,直接打印,返回。
if (sX == eX) {
for (int j = sY; j <= eY; ++j) {
System.out.print(num[sX][j] + " ");
}
return;
}
// 只有一列的情况,直接打印,返回。
if (sY == eY) {
for (int i = sX; i <= eX; ++i) {
System.out.print(num[i][sY] + " ");
}
return;
}
// 上行
for (int p = sY; p < eY; ++p) {
System.out.print(num[sX][p] + " ");
}
// 右列
for (int q = sX; q < eX; ++q) {
System.out.print(num[q][eY] + " ");
}
// 下行
for (int m = eY; m > sY; --m) {
System.out.print(num[eX][m] + " ");
}
// 左列
for (int n = eX; n > sX; --n) {
System.out.print(num[n][sY]+ " ");
}
}
2、数组中出现次数超过一半的数字(剑指offer-29)
题目:数组中有一个数字出现的次数超过数组长度的一半,请找出这个数字。例如输入一个长度为9的数组{1,2,3,2,2,2,5,4,2}。由于数字2在数组中出现了5次,超过数组长度的一半,因此输出2。
解法一:
如果一个数字在数组中出现的次数超过了数组长度的一半,那么对这个数组进行排序,位于数组中间位置的那个数就是出现次数超过一半的那个数。对数组排序的时间复杂度是O(nlog(n)),但是对于这道题目,还有更好的算法,能够在时间复杂度O(n)内求出。我们写过快速排序算法,其中的Partition()方法是一个最重要的方法,该方法返回一个index,能够保证index位置的数是已排序完成的,在index左边的数都比index所在的数小,在index右边的数都比index所在的数大。那么本题就可以利用这样的思路来解。
通过Partition()返回index,如果index==mid,那么就表明找到了数组的中位数;如果index<mid,表明中位数在[index+1,end]之间;如果index>mid,表明中位数在[start,index-1]之间。知道最后求得index==mid循环结束。
根据求得的index,遍历一遍数组,每当出现一个等于index所指向的数时time++,最后判断time是否大于数组长度的一半,如果大于则表明index所指向的数就是所求的数,如果不是,则表明不存在一个数出现的次数超过数组长度的一半。
// 一次快速排序
public static int Partition(int arr[], int low, int high) {
int pivotkey = arr[low];
while (low < high) {
while (low < high && arr[high] >= pivotkey)
high--;
arr[low] = arr[high];
while (low < high && arr[low] <= pivotkey)
low++;
arr[high] = arr[low];
}
arr[low] = pivotkey;
return low;
}
public static int moreThanHalf(int arry[], int start, int end) {
if (arry == null || arry.length <= 0)
return -1;
int index = Partition(arry, start, end);
int middle = arry.length / 2;
while (index != middle) {
if (index > middle)
index = Partition(arry, start, index - 1);
else
index = Partition(arry, index + 1, end);
}
if (!CheckMoreThanHalf(arry, arry.length, arry[middle]))
return -1;
return arry[middle];
}
// 检查result是否在arry中出现超过一半
public static boolean CheckMoreThanHalf(int arry[], int len, int result) {
int time = 0;
for (int i = 0; i < len; i++) {
if (arry[i] == result)
++time;
}
boolean isMoreThanHalf = true;
if (time * 2 <= len)
isMoreThanHalf = false;
return isMoreThanHalf;
}
public static void main(String[] args) {
int arr[] = { 2, 2, 1, 1, 1, 1, 3 };// 定义数组
int half = moreThanHalf(arr, 0, arr.length - 1);
System.out.println(half);
}
解法二:遍历数组时保存两个值,一个是数组中的数字,一个是出现的次数,遍历到一个数字时,
如果次数为零:遍历下一个数组元素,并把次数设为一。
如果次数不为零:
如果该数字和之前保存的数字相同,则次数加一,如果该数字和之前保存的数字不同,则次数减一,
要找的数字肯定是最后一次把次数设为1时对应的数字。
// 检查result是否在arry中出现超过一半
public static boolean CheckMoreThanHalf(int arry[], int len, int result) {
int time = 0;
for (int i = 0; i < len; i++) {
if (arry[i] == result)
++time;
}
boolean isMoreThanHalf = true;
if (time * 2 <= len)
isMoreThanHalf = false;
return isMoreThanHalf;
}
public static int moreThanHalfNum(int[] numbers, int length) {
if (numbers == null && length <= 0) {
return -1;
}
int result = 0;
int times = 0;
for (int i = 0; i < length; ++i) {
if (times == 0) {
result = numbers[i];
times = 1;
} else {
if (numbers[i] == result)
times++;
else
times--;
}
}
if (!CheckMoreThanHalf(numbers, length, result))
return -1;
return result;
}