021微表情检测系统之疲劳_漫不经心_注意力集中CNN图像版

该博客介绍了基于CNN的微表情检测系统,用于识别疲劳、注意力集中和漫不经心三种状态。通过训练数据集、模型训练及PyQT界面展示,实现了图像检测功能。文章讲解了CNN的基础知识,包括卷积、池化等,并提及了AlexNet、GoogleNet、VGG、RESNET、MobileNet和Swin Transformer等经典CNN架构及其特点。
摘要由CSDN通过智能技术生成

​视频演示:

到此一游7758258的个人空间_哔哩哔哩_bilibili

找到对应的021期

效果演示图如下:

 完整的文件展示如下:

 其中dataset文件夹下存放的图像数据集,包括alert(注意力集中)、non_vigilant(漫不经心)、tired(疲劳)等。

运行01训练数据集文本生成.py会将数据集图片路径保存在txt文本中。

运行02CNN迁移学习训练模型.py会将txt文本中的图像数据读取进行模型的训练,最后保存在weights文件夹下。

运行03pyqt界面.py展示可视化的界面,交互按钮,可以加载图片进行检测,识别状态:alert(注意力集中)、non_vigilant(漫不经心)、tired(疲劳)等。

科普下卷积神经网络相关知识:

CNN是卷积神经网

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值