排序算法系列之直接插入排序

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/hlc246/article/details/81076183

直接插入排序

1 基本原理

1 核心思想:插入排序通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入 ,如此重复,直至完成序列排序。
2 算法分析
1. 从序列第一个元素开始,该元素可以认为已经被排序
2. 取出下一个元素,设为待插入元素,在已经排序的元素序列中从后向前扫描,如果该元素(已排序)大于待插入元素,将该元素移到下一位置。
3. 重复步骤2,直到找到已排序的元素小于或者等于待排序元素的位置,插入元素
4. 重复2,3步骤,完成排序。

2 实例说明

如上图所示,以一组数据{12,15,9,20,6,31,24} 为例,进行直接插入排序的算法演示:

  1. 默认序列第一个元素12 以及被排序。
  2. 取下一元素 15 从后往前与已排序序列一次比较,15插入12 之后,已排序序列为[12,15]。
  3. 取下一元素9,重复2步骤,将9插12 之前,已排序序列为[9,12,15]。
  4. 循环上述操作,直至最后一个元素24,插入合适位置,完成排序。

3 代码实现

// 直接插入排序(C++)
void InsertSort(vector<int> &vi)
{
    for(int i=1;i<vi.size();i++) 
    {
        int temp=vi[i];
        int j;
        for(j=i-1;j>=0&&temp<vi[j];j--)
        {
            vi[j+1]=vi[j];     //将较大元素后移
        }

        vi[j+1]=temp;        //temp插入正确的位置

    }
}

算法改进:二分插入排序
二分查找插入排序的原理:是直接插入排序的一个变种,区别是:在有序区中查找新元素插入位置时,为了减少元素比较次数提高效率,采用二分查找算法进行插入位置的确定。

算法分析:
设数组为a[0…n]。
1. 将原序列分成有序区和无序区。a[0…i-1]为有序区,a[i…n] 为无序区。(i从1开始)
2. 从无序区中取出第一个元素,即a[i],使用二分查找算法在有序区中查找要插入的位置索引j。
3. 将a[j]到a[i-1]的元素后移,并将a[i]赋值给a[j]。
4. 重复步骤2~3,直到无序区元素为0。

// 二分插入排序
void BinInsertSort(vector<int> &vi)
{
    for(int i=1;i<vi.size();i++)
    {
        int left=0;
        int right=i-1;
        int temp=vi[i]
        while(left<=right)
        {
            int mid=(left+right)/2; //二分区域
            if(vi[mid]>temp)
            {
                right=mid-1;       //向左缩小区域
            }
            else
            {
                left=mid+1;        //向右缩小区域
            }
        }

        for(int j=i-1;j>left;j--)  //vi[left,i-1]的元素整体后移
        {
            vi[j+1]=vi[j];
        }
        vi[left]=temp;
    }
}

4 性能分析

  • 1 时间复杂度
    (1)顺序排列时,只需比较(n-1)次,插入排序时间复杂度为O(n)
    (2)逆序排序时,需比较n(n-1)/2次,插入排序时间复杂度为O(n^2)
    (3)当原始序列杂乱无序时,平均时间复杂度为O(n^2)
  • 2 空间复杂度
    插入排序过程中,需要一个临时变量temp存储待排序元素,因此空间复杂度为O(1)
  • 3 算法稳定性
    插入排序是一种稳定的排序算法

没有更多推荐了,返回首页