智能网络与优化调度实验四

网络交通流量调度优化问题求解

不会吧,这真有人看?
BY hllinyu
2023年5月11日

实验内容

考虑一个具有𝑀条道路(分别标记为:1, … , 𝑀)以及𝑁条路径(分别标记为:1, … , 𝑁) 的交通网络。每条路径由若干道路构成,令R∈R^(M×N) 表示道路-路径指示矩阵,若第𝑚条道路在第𝑛条路径上则R_mn=1,否则 R m n = 1 R_{mn}=1 Rmn=1 R m n R_{mn} Rmn为矩阵𝑅第𝑚行第𝑛列的元素。第𝑛条路 径上的交通流量记为 f n ≥ 0 f_n\geq0 fn0第𝑚条道路上的交通容量上限记为 c = [ c 1 , ⋯   , c m ] T c=\left[c_1,\cdots,c_m\right]^T c=[c1,,cm]T。 为了满足第𝑚条道路上的交通容量约束,有
∑ n = 1 N R m n f n ≤ c m \sum_{n=1}^{N}{R_{mn}f_n}\le c_m n=1NRmnfncm

当一条道路上的交通流量越多时,道路就会变得更加拥堵,通过该条道路的时延也就 越长,因此第𝑚条道路上的平均时延可以简单建模为
d m = 1 c m − ∑ n = 1 N , R m n f n d_m=\frac{1}{c_m-\sum_{n=1}^{N}{,R_{mn}f_n}} dm=c

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值