项目实训第四周团队及个人进展汇报

第四周(3.22-3.28)
我们团队在这周去找了老师,请求老师给我们思路和思考学习方向。在这一周的时间里,我们一共找了两次老师(由于我脚崴了,没能参与具体过程)。第一次,我们团队在交流了上周自己自学的部分论文的思路及收获的基础上的结论,我们拿到了自己团队的“猜测”思路。然后我们拿着自己的思路与老师进行沟通,验证自己的思路是否正确。但是老师所给的思路与我们自己搜索的资料截然不同。老师给出了一下几个名词:伴随网络、图、逻辑、攻击样本,引导我们按照这几种思路中的一种进行思考。老师还给我们了一位学姐的援助。学姐给了我们一些学习样例,并以两个比赛作为样例,让我们参考学习。我们在找完老师后立刻开展了线下会议。会议主要交流了老师的解释和学姐的讲解,我们根据老师所有列举的思路逐一展开讨论,最终定下了采用先问题生成,再对生成的问题进行处理的方法。
在3.22这天的会议里,除了是对老师,学姐说明的“复盘”,还有对这个生成问题的步骤的必要性的思考。按照往常逻辑,要对一段文本根据标准答案评分,只需要对比答案之间的文本相似度或者寻找相应关键词给定最后得分。那么老师给出的采用先生成问题在进行处理的方法意义何在,或者说有什么优点?我们经过讨论,觉得原因有三。第一,过去采用的大部分是直接比较答案文本的相似性,这里主要还是关键词的相似性,这将带来很大的局限,准确率也不高。第二,其实,在操作过程中,答案回答的是问题。所以说,问题要在一定程度上比答案更接近“本质”。那么采用生成问题在先的情况下,将有很大的机会来提高准确率。第三,问题的涵盖面一般情况下不受制于答案,面也更广,从某种意义上讲,答案并不能包含问题的所有方面;相比之下,答案必须回答的是问题中的某个点,范围上一般不至于问题。综上,我们认为问题生成还是很有必要进行的。
在3.25,我们又一次找了老师。这一次的目的在于进一步理顺思路。这一次,我们得到了项目整体的思路,整理的文件大致如下:
在这里插入图片描述

我们紧接着进行了一次会议,会议捋顺了老师的思路指导,主要交流了两个问题的,一个是问题生成的过程考虑,另一个是最后用来评分的评价函数。生成的问题q是需要满足条件的:样本中标记的答案应该能回答该问题,错误的答案不应该回答该问题。我们采用两次筛选的方法。第一次,使用评价函数,得到φ(q,R)与φ(q,P)一致的q。这就很好的解决了“样本中标记的答案应该能回答该问题”的问题。第二次,选出φ({q},N)与φ({q},P)不一致的q集。这能比较基础的解决“错误的答案不应该回答该问题”的问题。这两部之后,其实并不能算完成筛选。我们还需要最大化q,来提供更多的答案空间,提升准确率。求一个最大的q集,能够准确切割P与N。
对于评价函数,我们还没有做细致的思考。计划下周将搜索问题生成的相关方面的资料探索,并明晰评价函数的实现,进一步理解该思路的实现方法。
在3.27,我们讨论了相应环境的配置。我们打算采用pytorch,安装配置了环境。在这之后,我们考虑问题生成采用什么方式。在商定以神经网络为基础的情况下,我们先学习了神经网络的基础知识,主要是RNN,资料网站如下:
https://blog.csdn.net/zhaojc1995/article/details/80572098?utm_medium=distribute.pc_relevant.none-task-blog-2%7Edefault%7EBlogCommendFromBaidu%7Edefault-5.control&dist_request_id=&depth_1-utm_source=distribute.pc_relevant.none-task-blog-2%7Edefault%7EBlogCommendFromBaidu%7Edefault-5.control

至于我个人,这周活动主要集中于会议,即思路的确定与理解。工作过程在上文中已经列举,不再赘述。其中,关于问题生成的意义我做了自己的理解,并充分理解了思路中的q与φ。之后便可按部就班,继续学习。

数据心机房是现代信息技术的核心设施,它承载着企业的重要数据和服务,因此,其基础设计与规划至关重要。在制定这样的方案时,需要考虑的因素繁多,包括但不限于以下几点: 1. **容量规划**:必须根据业务需求预测未来几年的数据处理和存储需求,合理规划机房的规模和设备容量。这涉及到服务器的数量、存储设备的容量以及网络带宽的需求等。 2. **电力供应**:数据心是能源消耗大户,因此电力供应设计是关键。要考虑不间断电源(UPS)、备用发电机的容量,以及高效节能的电力分配系统,确保电力的稳定供应并降低能耗。 3. **冷却系统**:由于设备密集运行,散热问题不容忽视。合理的空调布局和冷却系统设计可以有效控制机房温度,避免设备过热引发故障。 4. **物理安全**:包括防火、防盗、防震、防潮等措施。需要设计防火分区、安装烟雾探测和自动灭火系统,设置访问控制系统,确保只有授权人员能进入。 5. **网络架构**:规划高速、稳定、冗余的网络架构,考虑使用光纤、以太网等技术,构建层次化网络,保证数据传输的高效性和安全性。 6. **运维管理**:设计易于管理和维护的IT基础设施,例如模块化设计便于扩展,集监控系统可以实时查看设备状态,及时发现并解决问题。 7. **绿色数据心**:随着环保意识的提升,绿色数据心成为趋势。采用节能设备,利用自然冷源,以及优化能源管理策略,实现低能耗和低碳排放。 8. **灾难恢复**:考虑备份和恢复策略,建立异地灾备心,确保在主数据心发生故障时,业务能够快速恢复。 9. **法规遵从**:需遵循国家和地区的相关法律法规,如信息安全、数据保护和环境保护等,确保数据心的合法运营。 10. **扩展性**:设计时应考虑到未来的业务发展和技术进步,保证机房有充足的扩展空间和升级能力。 技术创新在数据心机房基础设计及规划方案扮演了重要角色。例如,采用虚拟化技术可以提高硬件资源利用率,软件定义网络(SDN)提供更灵活的网络管理,人工智能和机器学习则有助于优化能源管理和故障预测。 总结来说,一个完整且高效的数据心机房设计及规划方案,不仅需要满足当前的技术需求和业务目标,还需要具备前瞻性和可持续性,以适应快速变化的IT环境和未来可能的技术革新。同时,也要注重经济效益,平衡投资成本与长期运营成本,实现数据心的高效、安全和绿色运行。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值