【ST算法简介】
信息学竞赛中,经常会出现RMQ问题,即求区间最大(小)值问题。那么,我们该如何求解呢?ST算法横空出世。
ST算法(Sparse Table,稀疏表)主要用于解决区间最值问题(即RMQ问题)。因为ST算法求解RMQ问题时的时间复杂度只有O(nlogn),查询时间复杂度为常数阶O(1),所以我们还常称ST算法为TLE的死敌。虽然还可以使用线段树、树状数组、splay等算法求解区间最值问题,但是ST算法比它们更快,更适用于在线查询。
ST算法分成两部分:离线预处理O(nlogn)和在线查询O(1)。
(1)离线预处理:运用DP思想求解区间最值,并将结果保存到一个二维数组中。
(2)在线查询:对给定区间进行分割,并借助上步中的二维数组求最值
【ST算法详解】
本题利用了ST算法求解,ST算法分预处理及询问两部分。要理解ST算法,首先要注意下文表述中的移位运算符 >>及<< 的优先级比四则运算 +-*/ 的优先级高。这样就能理解 1<<(j-1) 及 1<<j-1 代表不同的运算,即 1<<(j-1) 等价于 2^(j-1), 1<<j-1 等价于 2^j-1。
(1)预处理
ST算法首先约定用 a[1] ~ a[n] 表示给定的一组数,f[i][j]表示从 a[i] ~ a[i+1<<j-1] 范围内的最大值,也即以 a[i] 为起点的连续 2^j 个数的最大值(∵ a[x] ~ a[y] 包含有 y-x+1 个数)。由于ST算法用到了倍增思想,因此自然有将 2^j 个数从中间平均分成两等分的实践,显然每一部分有 1<<(j-1) 个数,即2^(j-1) 个数。显然,初始范围 a[i] ~ a[i+1<<j-1] 被等分后,第一部分范围为 a[i] ~a[i+1<<(j-1)-1],第二部分范围为 a[i+1<<(j-1)] ~ a[i+1<<j-1],分别对应于f[i][j-1]和f[i+1<<(j-1)][j-1]。
综上,得 f[i][j]=max(f[i][j-1],f[i+(1<<(j-1))][j-1])
(2)查询
若给定查询区间 [x,y],若利用ST算法求此区间内的最大值。则需先求出最大的 k,使之满足 2^k ≤ y-x+1 。
在此基础上,区间 [x,y]=[x,x+2^k-1]∪[y-2^k+1,y],则区间 [x,y] 内的最大值为 max(f[x][k],f[y-(1<<k)+1][k]) 。虽然这两个区间有交集,但对于求区间最值来说没有影响。
据上,利用ST算法查询区间 [x,y] 的最大值,计算式如下:
k=log2(y-x+1)
max(f[x][k],f[y-(1<<k)+1][k])
【算法代码】
#include<bits/stdc++.h>
using namespace std;
const int maxn=100005;
const int maxm=20; //∵log(10^6)<20
int a[maxn];
int f[maxn][maxm]; //f[i][j]表示从i位起的2^j个数中的最大数
int main() {
int n,m,x,y;
scanf("%d%d",&n,&m);
for(int i=1; i<=n; i++) {
scanf("%d",&a[i]); //数组a的下标从1开始
f[i][0]=a[i]; //f[i][0]表示[i,i]中的最大值,只能是a[i],故f[i][0]=a[i]
}
for(int j=1; j<=log2(n); j++)
for(int i=1; i+(1<<j)-1<=n; i++)//注意i的右端点为i+(1<<j)-1,不能越界
f[i][j]=max(f[i][j-1],f[i+(1<<(j-1))][j-1]); //预处理
for(int i=1; i<=m; i++) { //查询
scanf("%d%d",&x,&y);
int k=log2(y-x+1);
printf("%d\n",max(f[x][k],f[y-(1<<k)+1][k]));
}
return 0;
}
/*
in:
10 2
3 2 4 5 6 8 1 2 9 7
1 4
3 8
out:
5
8
*/
【参考文献】
https://blog.csdn.net/hnjzsyjyj/article/details/139749246
https://blog.csdn.net/hnjzsyjyj/article/details/103429761
https://www.acwing.com/solution/content/14969/