堆优化的Dijkstra算法(邻接表+优先队列+pair)

【算法分析】
朴素的Dijkstra算法会超时,因此必然需要进行优化。
对Dijkstra算法常见的优化方法有堆优化。而堆是一种优先队列(
priority_queue),故堆优化即基于优先队列的优化。

【程序代码】

#include <bits/stdc++.h>
using namespace std;

const int INF=0x3f3f3f3f;
const int MAXN=1000+7;
int n,m,x;

struct Edge {
	int to;
	int cost;
};
typedef pair<int, int> Pair;  // first是起点到其他顶点的最短距离, second顶点的编号

vector<Edge> G[MAXN];
int dis[MAXN];

void dijkstra(int st) {
	priority_queue<Pair, vector<Pair>, greater<Pair> > que;	//堆按照first从小到大的顺序取值
	memset(dis, 0x3f, sizeof(dis));
	dis[st]=0;
	que.push(Pair(0,st));	// 把起点放入队列

	while(!que.empty()) {
		Pair p=que.top();
		que.pop();
		int v=p.second;
		if(dis[v]<p.first)
			continue;
		for(int i=0; i<G[v].size(); i++) {
			Edge e=G[v][i];
			if(dis[e.to]>dis[v]+e.cost) {
				dis[e.to]=dis[v]+e.cost;
				que.push(Pair(dis[e.to],e.to));
			}
		}
	}

}

int main() {
	cin>>n>>m; //n:顶点数,m:边数
	for(int i=1; i<=m; i++) {
		Edge e;
		cin>>x>>e.to>>e.cost;
		G[x].push_back(e);
	}

	dijkstra(1);

	for(int i=1; i<=n; i++) {
		cout<<dis[i]<<" ";
	}

	return 0;
}

/*
input:
6 9
1 2 1
1 3 12
2 3 9
2 4 3
3 5 5
4 3 4
4 5 13
4 6 15
5 6 4

output:
0 1 8 4 13 17
*/


【参考文献】
https://blog.csdn.net/hpu2022/article/details/88597073
https://blog.csdn.net/heroacool/article/details/51014824
https://user.qzone.qq.com/3076688630/blog/1565248435
https://www.cnblogs.com/fusiwei/p/11390537.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值