多重背包问题(二进制优化)

【算法分析】
多重背包问题通常可转化成01背包问题求解。但若将每种物品的数量拆分成多个1的话,时间复杂度会很高,从而导致TLE。所以,需要利用二进制优化思想。即:
一个正整数n,可以被分解成1,2,4,…,2^(k-1),n-2^k+1的形式。其中,k是满足n-2^k+1>0的最大整数。

例如,假设给定价值为2,数量为10的物品,依据二进制优化思想可将10分解为1+2+4+3,则原来价值为2,数量为10的物品可等效转化为价值分别为1*2,2*2,4*2,3*2,即价值分别为2,4,8,6,数量均为1的物品。

【算法代码】

#include <bits/stdc++.h>
using namespace std;

const int maxn=25000;
int N,V;
int w[maxn],v[maxn];
int dp[maxn];

int main() {
	cin>>N>>V;
	int cnt=0;
	for(int i=1; i<=N; i++) {
		int wi,vi,s;
		cin>>wi>>vi>>s;
		
		int k=1;		
		while(k<=s) {
			cnt++;
			w[cnt]=wi*k;
			v[cnt]=vi*k;
			s-=k;
			k*=2;
		}
		
		if(s>0) {
			cnt++;
			w[cnt]=wi*s;
			v[cnt]=vi*s;
		}
	}

	N=cnt;
	for(int i=1; i<=N; i++) {
		for(int j=V; j>=w[i]; j--)
			dp[j]=max(dp[j],dp[j-w[i]]+v[i]);
	}

	cout<<dp[V]<<endl;
	return 0;

}


/*
4 5
1 2 3
2 4 1
3 4 3
4 5 2

10
*/


【参考文献】
http://www.cnblogs.com/zyxStar/p/4574867.html
https://www.acwing.com/problem/content/5/

多重背包(0-1 Knapsack Problem)是一个经典的动态规划问题,通常用于资源分配决策。它的变体二进制优化策略利用了二进制搜索的思想来减少计算量。以下是使用C语言实现基本的二进制动态规划算法解决这个问题的一个简化版示例: ```c #include <stdio.h> // 物品信息结构 typedef struct { int weight; // 物品重量 int value; // 物品价值 } Item; // 动态规划函数 int knapSack(int W, Item items[], int n) { int dp[1 << n]; // 使用二进制表示物品的选择,dp[i] 表示容量i能装下的最大价值 for (int i = 0; i <= W; i++) { dp[0] = 0; // 初始化空背包的价值 for (int j = 0; j < n; j++) { if (items[j].weight <= i) { dp[i] = max(dp[i], dp[i - items[j].weight] + items[j].value); // 如果物品可以装下,选择装入或不装入 } else { dp[i] = dp[i]; } } } return dp[W]; // 返回总价值 } int main() { int W = 50; // 容量 Item items[] = {{60, 100}, {100, 180}, {120, 200}}; // 物品列表 int n = sizeof(items) / sizeof(items[0]); printf("最大价值: %d\n", knapSack(W, items, n)); return 0; } ``` 在这个代码里,我们首先初始化了一个大小为 `1 << n` 的数组 `dp`,其中 `n` 是物品的数量。然后,对于每个可能的背包容量 `i`,从第一个物品开始遍历,如果当前物品可以放入背包,我们就比较放入和不放两种情况下的最大价值。 注意,这是一个简化版本,实际应用中可能需要处理更复杂的情况,比如负价值物品、整数背包限制等。此外,这个例子并没有使用二进制优化,因为二进制优化通常在求解过程中查找满足条件的最大物品组合,而不是直接计算所有可能性。在实际问题中,会结合物品的重量特性进行优化
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值