求证:原函数与逆函数具有相同的单调性

求证:原函数与逆函数具有相同的单调性
证明:设原函数为 y = f ( x ) y=f(x) y=f(x),则其逆函数表示为 x = g ( y ) x=g(y) x=g(y)
不妨设原函数单调递增,则有 ( x 1 − x 2 ) [ f ( x 1 ) − f ( x 2 ) ] > 0 (x_1-x_2)[f(x_1)-f(x_2)] \gt 0 (x1x2)[f(x1)f(x2)]>0
相应的,对其逆函数则有 ( y 1 − y 2 ) [ g ( y 1 ) − g ( y 2 ) ] = [ f ( x 1 ) − f ( x 2 ) ] ( x 1 − x 2 ) > 0 (y_1-y_2)[g(y_1)-g(y_2)]=[f(x_1)-f(x_2)](x_1-x_2) \gt 0 (y1y2)[g(y1)g(y2)]=[f(x1)f(x2)](x1x2)>0,得证。


本文的LaTeX代码如下:

求证:原函数与逆函数具有相同的单调性
证明:设原函数为$y=f(x)$,则其逆函数表示为$x=g(y)$。
不妨设原函数单调递增,则有$(x_1-x_2)[f(x_1)-f(x_2)] \gt 0$,
相应的,对其逆函数则有$(y_1-y_2)[g(y_1)-g(y_2)]=[f(x_1)-f(x_2)](x_1-x_2) \gt 0$,得证。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值