读书笔记:复合 Poisson 过程

【定义】
称随机过程 { X ( t ) , t ≥ 0 } \{X(t),t\geq 0\} {X(t),t0} 为复合 Poisson 过程,如果对于 t ≥ 0 t\geq 0 t0,它可以表示为: X ( t ) = ∑ i = 1 N ( t ) Y i X(t)=\sum \limits_{i=1}^{N(t)} Y_i X(t)=i=1N(t)Yi
式中, { N ( t ) , t ≥ 0 } \{N(t),t\geq 0\} {N(t),t0} 是一个 Poisson 过程; { Y i , i = 1 , 2 , ⋯   } \{Y_i,i=1,2,\cdots\} {Yi,i=1,2,} 是一族独立同分布的随机变量,并且与 { N ( t ) , t ≥ 0 } \{N(t),t\geq 0\} {N(t),t0} 独立。

=======================================

【定理】
{ X ( t ) = ∑ i = 1 N ( t ) Y i , t ≥ 0 } \{X(t)=\sum \limits_{i=1}^{N(t)} Y_i,t\geq 0\} {X(t)=i=1N(t)Yi,t0} 是一个复合 Poisson 过程,Poisson 过程 { N ( t ) , t ≥ 0 } \{N(t),t\geq 0\} {N(t),t0} 的强度为 λ \lambda λ,则
(1) X ( t ) X(t) X(t) 有独立增量;
(2)若 E ( Y i 2 ) < + ∞ E(Y_i^2)<+\infty E(Yi2)<+,则 E [ X ( t ) ] = λ t E ( Y 1 ) , V a r [ X ( t ) ] = λ t E ( Y 1 2 ) E[X(t)]=\lambda tE(Y_1),Var[X(t)]=\lambda tE(Y_1^2) E[X(t)]=λtE(Y1),Var[X(t)]=λtE(Y12)

【证明】
(1)令 0 ≤ t 0 < t 1 < ⋯ < t n 0\leq t_0\lt t_1\lt \cdots \lt t_n 0t0<t1<<tn,则
X ( t k ) − X ( t k − 1 ) = ∑ i = N ( t k − 1 ) + 1 N ( t k ) Y i , k = 1 , 2 , ⋯   , n X(t_k)-X(t_{k-1})=\sum \limits_{i=N(t_{k-1})+1}^{N(t_k)}Y_i,k=1,2,\cdots,n X(tk)X(tk1)=i=N(tk1)+1N(tk)Yi,k=1,2,,n
由 Poisson 过程的独立增量性及各 Y i , ( i = 1 , 2 , ⋯   , n ) Y_i,(i=1,2,\cdots,n) Yi,(i=1,2,,n) 之间的独立性,可以得出 X ( t ) X(t) X(t) 的独立增量性。
(2)求 X ( t ) X(t) X(t) 的矩母函数
ϕ X ( t ) ( μ ) = E [ e μ X ( t ) ] \phi_{X(t)}(\mu)=E[e^{\mu X(t)}] ϕX(t)(μ)=E[eμX(t)]
= ∑ n = 0 ∞ E [ e μ X ( t ) ∣ N ( t ) = n ] ⋅ P [ N ( t ) = n ] =\sum \limits_{n=0}^{\infty}E[e^{\mu X(t)}|N(t)=n] \cdot P[N(t)=n] =n=0E[eμX(t)N(t)=n]P[N(t)=n]
= ∑ n = 0 ∞ E [ e μ ( Y 1 + Y 2 + ⋯ + Y n ) ∣ N ( t ) = n ] ⋅ e − λ t ( λ t ) n n ! \displaystyle =\sum \limits_{n=0}^{\infty}E[e^{\mu (Y_1+Y_2+\cdots+Y_n)}|N(t)=n] \cdot e^{-\lambda t}\frac{(\lambda t)^n}{n!} =n=0E[eμ(Y1+Y2++Yn)N(t)=n]eλtn!(λt)n
= ∑ n = 0 ∞ E [ e μ ( Y 1 + Y 2 + ⋯ + Y n ) ] ⋅ e − λ t ( λ t ) n n ! \displaystyle =\sum \limits_{n=0}^{\infty}E[e^{\mu (Y_1+Y_2+\cdots+Y_n)}] \cdot e^{-\lambda t}\frac{(\lambda t)^n}{n!} =n=0E[eμ(Y1+Y2++Yn)]eλtn!(λt)n
= ∑ n = 0 ∞ E ( e μ Y 1 ) E ( e μ Y 2 ) ⋯ E ( e μ Y n ) ⋅ e − λ t ( λ t ) n n ! \displaystyle =\sum \limits_{n=0}^{\infty}E(e^{\mu Y_1}) E(e^{\mu Y_2}) \cdots E(e^{\mu Y_n})\cdot e^{-\lambda t}\frac{(\lambda t)^n}{n!} =n=0E(eμY1)E(eμY2)E(eμYn)eλtn!(λt)n
= ∑ n = 0 ∞ [ E ( e μ Y 1 ) ] n ⋅ e − λ t ( λ t ) n n ! \displaystyle =\sum \limits_{n=0}^{\infty}[E(e^{\mu Y_1})]^n \cdot e^{-\lambda t}\frac{(\lambda t)^n}{n!} =n=0[E(eμY1)]neλtn!(λt)n
= e − λ t ∑ n = 0 ∞ [ λ t E ( e μ Y 1 ) ] n n ! = e − λ t ⋅ e λ t E ( e μ Y 1 ) = e λ t E ( e μ Y 1 ) − λ t \displaystyle =e^{-\lambda t}\sum \limits_{n=0}^{\infty} \frac {[\lambda tE(e^{\mu Y_1})]^n}{n!}=e^{-\lambda t} \cdot e^{\lambda t E(e^{\mu Y_1})}=e^{\lambda t E(e^{\mu Y_1})-\lambda t} =eλtn=0n![λtE(eμY1)]n=eλteλtE(eμY1)=eλtE(eμY1)λt
对上面所得的矩母函数求导,得:
ϕ X ( t ) ′ ( μ ) = e − λ t ⋅ e λ t E ( e μ Y 1 ) ⋅ λ t E ( e μ Y 1 ⋅ Y 1 ) = λ t e − λ t ⋅ e λ t E ( e μ Y 1 ) ⋅ E ( Y 1 e μ Y 1 ) \phi_{X(t)}^{'}(\mu)=e^{-\lambda t} \cdot e^{\lambda t E(e^{\mu Y_1})} \cdot \lambda t E(e^{\mu Y_1} \cdot Y_1)=\lambda t e^{-\lambda t} \cdot e^{\lambda t E(e^{\mu Y_1})} \cdot E(Y_1 e^{\mu Y_1}) ϕX(t)(μ)=eλteλtE(eμY1)λtE(eμY1Y1)=λteλteλtE(eμY1)E(Y1eμY1)
ϕ X ( t ) ′ ′ ( μ ) = λ t e − λ t ⋅ [ e λ t E ( e μ Y 1 ) ⋅ λ t E ( Y 1 e μ Y 1 ) ] ⋅ E ( Y 1 e μ Y 1 ) + λ t e − λ t ⋅ e λ t E ( e μ Y 1 ) ⋅ E ( Y 1 e μ Y 1 ⋅ Y 1 ) \phi_{X(t)}^{''}(\mu)=\lambda t e^{-\lambda t} \cdot [e^{\lambda t E(e^{\mu Y_1})} \cdot \lambda tE(Y_1 e^{\mu Y_1})] \cdot E(Y_1 e^{\mu Y_1})+\lambda t e^{-\lambda t} \cdot e^{\lambda t E(e^\mu Y_1)} \cdot E(Y_1 e^{\mu Y_1} \cdot Y_1) ϕX(t)(μ)=λteλt[eλtE(eμY1)λtE(Y1eμY1)]E(Y1eμY1)+λteλteλtE(eμY1)E(Y1eμY1Y1)
= λ t e − λ t ⋅ e λ t E ( e μ Y 1 ) ⋅ [ λ t E ( Y 1 e μ Y 1 ) ⋅ E ( Y 1 e μ Y 1 ) + E ( Y 1 2 e μ Y 1 ) ] =\lambda t e^{-\lambda t} \cdot e^{\lambda t E(e^{\mu Y_1})} \cdot [\lambda tE(Y_1e^{\mu Y_1}) \cdot E(Y_1e^{\mu Y_1})+E(Y_1^2 e^{\mu Y_1})] =λteλteλtE(eμY1)[λtE(Y1eμY1)E(Y1eμY1)+E(Y12eμY1)]
由矩母函数的性质 ϕ X ( t ) ′ ( 0 ) = E ( X ( t ) ) ,   ϕ X ( t ) ′ ′ ( 0 ) = E ( X 2 ( t ) ) \phi_{X(t)}^{'}(0)=E(X(t)),\ \phi_{X(t)}^{''}(0)=E(X^2(t)) ϕX(t)(0)=E(X(t)), ϕX(t)(0)=E(X2(t)) 知,将 μ = 0 \mu =0 μ=0 代入上面的 ϕ X ( t ) ′ ( μ ) \phi_{X(t)}^{'}(\mu) ϕX(t)(μ) ϕ X ( t ) ′ ′ ( μ ) \phi_{X(t)}^{''}(\mu) ϕX(t)(μ) 中,可得:
ϕ X ( t ) ′ ( 0 ) = E ( X ( t ) ) = λ t E ( Y 1 ) \phi_{X(t)}^{'}(0)=E(X(t))=\lambda tE(Y_1) ϕX(t)(0)=E(X(t))=λtE(Y1)
ϕ X ( t ) ′ ′ ( 0 ) = E ( X 2 ( t ) ) = [ λ t E ( Y 1 ) ] 2 + λ t E ( Y 1 2 ) \phi_{X(t)}^{''}(0)=E(X^2(t))=[\lambda t E(Y_1)]^2+\lambda t E(Y_1^2) ϕX(t)(0)=E(X2(t))=[λtE(Y1)]2+λtE(Y12)
进而推出, V a r [ X ( t ) ] = E ( X 2 ( t ) ) − [ E ( X ( t ) ) ] 2 = λ t E ( Y 1 2 ) Var[X(t)]=E(X^2(t))-[E(X(t))]^2=\lambda t E(Y_1^2) Var[X(t)]=E(X2(t))[E(X(t))]2=λtE(Y12),得证。



【本文的LaTeX代码】

【定义】
称随机过程 $\{X(t),t\geq 0\}$ 为复合 Poisson 过程,如果对于 $t\geq 0$,它可以表示为:$X(t)=\sum \limits_{i=1}^{N(t)} Y_i$
式中,$\{N(t),t\geq 0\}$ 是一个 Poisson 过程;$\{Y_i,i=1,2,\cdots\}$ 是一族独立同分布的随机变量,并且与 $\{N(t),t\geq 0\}$ 独立。

=======================================

【定理】
设 $\{X(t)=\sum \limits_{i=1}^{N(t)} Y_i,t\geq 0\}$ 是一个复合 Poisson 过程,Poisson 过程 $\{N(t),t\geq 0\}$ 的强度为 $\lambda$,则
(1) $X(t)$ 有独立增量;
(2)若$E(Y_i^2)<+\infty$,则 <font color=red>$E[X(t)]=\lambda tE(Y_1),Var[X(t)]=\lambda tE(Y_1^2)$</font>
\
【证明】
(1)令$0\leq t_0\lt t_1\lt \cdots \lt t_n$,则
$X(t_k)-X(t_{k-1})=\sum \limits_{i=N(t_{k-1})+1}^{N(t_k)}Y_i,k=1,2,\cdots,n$
由 Poisson 过程的独立增量性及各 $Y_i,(i=1,2,\cdots,n)$ 之间的独立性,可以得出 $X(t)$ 的独立增量性。
(2)求 $X(t)$ 的矩母函数
$\phi_{X(t)}(\mu)=E[e^{\mu X(t)}]$
$=\sum \limits_{n=0}^{\infty}E[e^{\mu X(t)}|N(t)=n] \cdot P[N(t)=n]$
$\displaystyle =\sum \limits_{n=0}^{\infty}E[e^{\mu (Y_1+Y_2+\cdots+Y_n)}|N(t)=n] \cdot e^{-\lambda t}\frac{(\lambda t)^n}{n!}$
$\displaystyle =\sum \limits_{n=0}^{\infty}E[e^{\mu (Y_1+Y_2+\cdots+Y_n)}] \cdot e^{-\lambda t}\frac{(\lambda t)^n}{n!}$
$\displaystyle =\sum \limits_{n=0}^{\infty}E(e^{\mu Y_1}) E(e^{\mu Y_2}) \cdots E(e^{\mu Y_n})\cdot e^{-\lambda t}\frac{(\lambda t)^n}{n!}$
$\displaystyle =\sum \limits_{n=0}^{\infty}[E(e^{\mu Y_1})]^n \cdot e^{-\lambda t}\frac{(\lambda t)^n}{n!}$
$\displaystyle =e^{-\lambda t}\sum \limits_{n=0}^{\infty} \frac {[\lambda tE(e^{\mu Y_1})]^n}{n!}=e^{-\lambda t} \cdot e^{\lambda t E(e^{\mu Y_1})}=e^{\lambda t E(e^{\mu Y_1})-\lambda t}$
对上面所得的矩母函数求导,得:
$\phi_{X(t)}^{'}(\mu)=e^{-\lambda t} \cdot e^{\lambda t E(e^{\mu Y_1})} \cdot \lambda t E(e^{\mu Y_1} \cdot Y_1)=\lambda t e^{-\lambda t} \cdot e^{\lambda t E(e^{\mu Y_1})} \cdot E(Y_1 e^{\mu Y_1})$
$\phi_{X(t)}^{''}(\mu)=\lambda t e^{-\lambda t} \cdot [e^{\lambda t E(e^{\mu Y_1})} \cdot \lambda tE(Y_1 e^{\mu Y_1})] \cdot E(Y_1 e^{\mu Y_1})+\lambda t e^{-\lambda t} \cdot e^{\lambda t E(e^\mu Y_1)} \cdot E(Y_1 e^{\mu Y_1} \cdot Y_1)$
$=\lambda t e^{-\lambda t} \cdot e^{\lambda t E(e^{\mu Y_1})} \cdot [\lambda tE(Y_1e^{\mu Y_1}) \cdot E(Y_1e^{\mu Y_1})+E(Y_1^2 e^{\mu Y_1})]$
由矩母函数的性质 <font color=red>$\phi_{X(t)}^{'}(0)=E(X(t)),\ \phi_{X(t)}^{''}(0)=E(X^2(t))$</font> 知,将$\mu =0$ 代入上面的 $\phi_{X(t)}^{'}(\mu)$ 及 $\phi_{X(t)}^{''}(\mu)$ 中,可得:
$\phi_{X(t)}^{'}(0)=E(X(t))=\lambda tE(Y_1)$,
$\phi_{X(t)}^{''}(0)=E(X^2(t))=[\lambda t E(Y_1)]^2+\lambda t E(Y_1^2)$,
进而推出,$Var[X(t)]=E(X^2(t))-[E(X(t))]^2=\lambda t E(Y_1^2)$,得证。

\
\
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值