【题目来源】
https://www.acwing.com/problem/content/description/2173/
【问题描述】
给定一个包含 n 个点 m 条边的有向图,并给定每条边的容量,边的容量非负。
图中可能存在重边和自环。求从点 S 到点 T 的最大流。
【输入格式】
第一行包含四个整数 n,m,S,T。
接下来 m 行,每行三个整数 u,v,c,表示从点 u 到点 v 存在一条有向边,容量为 c。
点的编号从 1 到 n。
【输出格式】
输出点 S 到点 T 的最大流。
如果从点 S 无法到达点 T 则输出 0。
【数据范围】
2≤n≤1000,
1≤m≤10000,
0≤c≤10000,
S≠T
【算法分析】
一、链式前向星
由于网络流是有向有权图,因此可以选择链式前向星存图。关于链式前向星的知识点,可详见:
https://blog.csdn.net/hnjzsyjyj/article/details/139369904
https://blog.csdn.net/hnjzsyjyj/article/details/126474608
https://blog.csdn.net/hnjzsyjyj/article/details/119917795
https://blog.csdn.net/hnjzsyjyj/article/details/126488154
二、异或^运算
首先给出如下的异或^运算的实例。
0^1=1, 1^1=0
2^1=3, 3^1=2
4^1=5,5^1=4
……
通过观察,可知x^1^1=x,即对一个数连续执行两次“^1”运算后,便会得到自身。这恰好与网络流中“反向边的反向边等于自身”不谋而合。
因此,在网络流的算法实现中,我们可以利用“^1”运算来表示反向边。
【算法代码】
/* 链式前向星存图
val[idx]:存储编号为 idx 的边的值
e[idx]:存储编号为 idx 的结点的值
ne[idx]:存储编号为 idx 的结点指向的结点的编号
h[a]:存储头结点 a 指向的结点的编号
*/
#include <bits/stdc++.h>
using namespace std;
const int maxn=1010;
const int maxm=20010;
const int inf=0x3f3f3f3f;
int n,m,s,t;
int e[maxm],ne[maxm],h[maxn],val[maxm],idx;
int q[maxn],d[maxn],pre[maxm];
bool st[maxn]; //stamp
void add(int u, int v, int w) { //Construct residual network
val[idx]=w,e[idx]=v,ne[idx]=h[u],h[u]=idx++;
val[idx]=0,e[idx]=u,ne[idx]=h[v],h[v]=idx++;
}
bool bfs() { //Finding the Augmenting Path
memset(st,0,sizeof st);
int head=0;
int tail=0;
q[0]=s, st[s]=true, d[s]=inf;
while(head<=tail) {
int u=q[head++];
for(int i=h[u]; i!=-1; i=ne[i]) {
int j=e[i];
if(!st[j] && val[i]) {
st[j]=true;
pre[j]=i;
d[j]=min(d[u],val[i]);
if(j==t)return true;
q[++tail]=j;
}
}
}
return false;
}
int EK() {
int ans=0;
while(bfs()) {
ans+=d[t];
for(int i=t; i!=s; i=e[pre[i]^1]) {
val[pre[i]]-=d[t];
val[pre[i]^1]+=d[t];
}
}
return ans;
}
int main() {
scanf("%d%d%d%d",&n,&m,&s,&t);
memset(h,-1,sizeof h);
while(m--) {
int u,v,w;
scanf("%d%d%d",&u,&v,&w);
add(u,v,w);
}
printf("%d\n",EK());
return 0;
}
/*
in:
7 14 1 7
1 2 5
1 3 6
1 4 5
2 3 2
2 5 3
3 2 2
3 4 3
3 5 3
3 6 7
4 6 5
5 6 1
6 5 1
5 7 8
6 7 7
out:
14
*/
【参考文献】
https://blog.csdn.net/hnjzsyjyj/article/details/139369904
https://blog.csdn.net/hnjzsyjyj/article/details/126474608
https://blog.csdn.net/hnjzsyjyj/article/details/119917795
https://blog.csdn.net/hnjzsyjyj/article/details/126488154
https://blog.csdn.net/pspdragon/article/details/78726016