AcWing 790:数的三次方根 ← 浮点数二分

【题目来源】
https://www.acwing.com/problem/content/792/

【题目描述】
给定一个浮点数 n,求它的三次方根。

【输入格式】
共一行,包含一个浮点数 n。

【输出格式】
共一行,包含一个浮点数,表示问题的解。
注意,结果保留 6 位小数。

【数据范围】
−10000≤n≤10000

【输入样例】
1000.00

【输出样例】
10.000000

【算法分析】
二分查找,也称为折半查找,是一种高效的查找方法。它基于分治策略,利用数据的
有序性,每次将搜索范围缩小一半,直至找到目标元素或搜索区间为空。二分查找要求必须采用顺序存储结构,且其中的元素按关键字有序排列。

整数二分的经典模板如下:
模板一
从大到小查找结论 ←):当我们将区间 [le, ri] 划分成 [le, mid][mid+1, ri] 时,其更新操作是 ri=mid 或者 le=mid+1,计算 mid 时不需要加 1( 见下文代码中的 int mid=(le+ri)>>1; )。

void BinarySearch(vector<int> v,int target) {
    int le=0;
    int ri=v.size();
    while(le<ri) {
        int mid=(le+ri)>>1;
        if(v[mid]<target) le=mid+1;
        else ri=mid;
    }
}

模板二从小到大查找结论 →):当我们将区间 [le, ri] 划分成 [le, mid-1][mid, ri] 时,其更新操作是 ri=mid-1 或者 le=mid,此时为了防止死循环,计算 mid 时需要加 1( 见下文代码中的 int mid=(le+ri+1)>>1; )。

int BinarySearch(vector<int> v,int target) {
    int le=0;
    int ri=v.size();
    while(le<ri) {
        int mid=(le+ri+1)>>1;
        if(v[mid]<target) le=mid;
        else ri=mid-1;
    }
}

浮点数二分的经典模板如本题代码所示。
因为浮点数的精度很高,只需要逐渐逼近题目要求的精度就可以了。这里需要注意的是,需要预先设定一个阈值 eps,一般是比题目的精度还要高 2 位,比如题目要求的精度是1e-6,那么就可以设eps=1e-8。

【算法代码】

#include <bits/stdc++.h>
using namespace std;

double le=-100000;
double ri=100000;

int main() {
    double x;
    cin>>x;
    while(ri-le>1e-8) {
        double mid=(le+ri)/2;
        if(mid*mid*mid<x) le=mid;
        else ri=mid;
    }
    printf("%.6f",ri);
    return 0;
}

/*
in:1000.00
out:10.000000
*/






【参考文献】
https://www.acwing.com/solution/content/17974/

https://www.acwing.com/video/232/



 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值