AcWing 217:绿豆蛙的归宿 ← 搜索算法

【题目来源】
https://www.acwing.com/problem/content/219/

【题目描述】
给出一个
有向无环连通图,起点为 1,终点为 N,每条边都有一个长度。
数据保证从起点出发能够到达图中所有的点,图中所有的点也都能够到达终点。
绿豆蛙从起点出发,走向终点。
到达每一个顶点时,如果有 K 条离开该点的道路,绿豆蛙可以选择任意一条道路离开该点,并且走向每条路的概率为 1/K。
现在绿豆蛙想知道,从起点走到终点所经过的路径总长度的
期望是多少?

【输入格式】
第一行: 两个整数 N,M,代表图中有 N 个点、M 条边。
第二行到第 1+M 行: 每行 3 个整数 a,b,c,代表从 a 到 b 有一条长度为 c 的有向边。

【输出格式】
输出从起点到终点路径总长度的期望值,结果四舍五入保留两位小数。

【数据范围】
1≤N≤10^5,
1≤M≤2N

【输入样例】
4 4
1 2 1
1 3 2
2 3 3
3 4 4

【输出样例】
7.00

【算法分析】
● 本题用到概率论中
数学期望的线性性质E(aX+bY)=aE(X)+bE(Y)

● 设
f(x) 表示从节点 x 走到终点所经过的路径的期望长度
若从 x 出发有 k 条边,分别到达 y1,y2,…,yk,边长分别是 z1,z2,…,zk,则根据数学期望的定义和性质,有:f(x)=\frac{1}{k}\sum_{i=1}^{k}(f(y_i)+z_i)。示意图如下所示:

由于题目给定起点为 1,终点为 N,故分析得初始状态为 f[N]=0,目标状态是 f[1]。

● 
链式前向星https://blog.csdn.net/hnjzsyjyj/article/details/126474608
链式前向星的核心代码模板如下所示:

void add(int a,int b) {
    e[idx]=b,ne[idx]=h[a],h[a]=idx++;
}

void add(int a,int b,int w) {
    val[idx]=w,e[idx]=b,ne[idx]=h[a],h[a]=idx++;
}

void dfs(int u) { //dfs
    cout<<u<<" ";
    st[u]=true;
    for(int i=h[u]; ~i; i=ne[i]) { //~i; equivalent to i!=-1;
        int j=e[i];
        if(!st[j]) {
            dfs(j);
        }
    }
}

void bfs(int u) { //bfs
    queue<int>q;
    st[u]=true;
    q.push(u);
    while(!q.empty()) {
        int t=q.front();
        q.pop();
        cout<<t<<" ";
        for(int i=h[t]; ~i; i=ne[i]) { //~i; equivalent to i!=-1;
            int j=e[i];
            if(!st[j]) {
                q.push(j);
                st[j]=true; //need to be flagged immediately after being queued
            }
        }
    }
}


【算法代码】

#include <bits/stdc++.h>
using namespace std;

const int N=1e5+5;
const int M=2e5+5;

int val[M],e[M],ne[M],h[N],idx;
int cdu[N];
double f[N];
int n,m;

void add(int a,int b,int w) {
    val[idx]=w,e[idx]=b,ne[idx]=h[a],h[a]=idx++;
}

double dp(int u) {
    if(f[u]>=0) return f[u];
    f[u]=0;
    for(int i=h[u]; i!=-1; i=ne[i]) {
        int j=e[i];
        f[u]+=(val[i]+dp(j))/cdu[u];
    }
    return f[u];
}

int main() {
    memset(h,-1,sizeof h);
    cin>>n>>m;
    for(int i=0; i<m; i++) {
        int a,b,c;
        cin>>a>>b>>c;
        add(a,b,c);
        cdu[a]++;
    }
    memset(f,-1,sizeof f);
    printf("%.2lf\n",dp(1));

    return 0;
}

/*
in:
4 4
1 2 1
1 3 2
2 3 3
3 4 4

out:
7.00
*/




【参考文献】
https://www.acwing.com/solution/content/145113/
https://www.acwing.com/solution/content/25991/
https://www.acwing.com/problem/content/video/219/



 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值