【题目来源】
https://www.acwing.com/problem/content/479/
【题目描述】
人工神经网络(Artificial Neural Network)是一种新兴的具有自我学习能力的计算系统,在模式识别、函数逼近及贷款风险评估等诸多领域有广泛的应用。
对神经网络的研究一直是当今的热门方向,兰兰同学在自学了一本神经网络的入门书籍后,提出了一个简化模型,他希望你能帮助他用程序检验这个神经网络模型的实用性。
在兰兰的模型中,神经网络就是一张有向图,图中的节点称为神经元,而且两个神经元之间至多有一条边相连,下图是一个神经元的例子:
图中,X1—X3是信息输入渠道,Y1-Y2 是信息输出渠道,C1 表示神经元目前的状态,Ui 是阈值,可视为神经元的一个内在参数。
神经元按一定的顺序排列,构成整个神经网络。
在兰兰的模型之中,神经网络中的神经元分为几层;称为输入层、输出层,和若干个中间层。
每层神经元只向下一层的神经元输出信息,只从上一层神经元接受信息。
下图是一个简单的三层神经网络的例子。
兰兰规定,Ci 服从公式:,(其中 n 是网络中所有神经元的数目)
公式中的Wji(可能为负值)表示连接 j 号神经元和 i 号神经元的边的权值。
当 Ci 大于 0 时,该神经元处于兴奋状态,否则就处于平静状态。
当神经元处于兴奋状态时,下一秒它会向其他神经元传送信号,信号的强度为 Ci。
如此.在输入层神经元被激发之后,整个网络系统就在信息传输的推动下进行运作。
现在,给定一个神经网络,及当前输入层神经元的状态(Ci),要求你的程序运算出最后网络输出层的状态。
【输入格式】
输入文件第一行是两个整数 n 和 p。
接下来 n 行,每行两个整数,第 i+1 行是神经元 i 最初状态和其阈值(Ui)。注意:输入层给定的状态即为最终值,不需要再减去 Ui,非输入层的神经元开始时状态必然为 0。
再下面 P 行,每行有两个整数 i,j 及一个整数 Wij,表示连接神经元 i、j 的边权值为 Wij。
【输出格式】
输出文件包含若干行,每行有两个整数,分别对应一个神经元的编号,及其最后的状态,两个整数间以空格分隔。
仅输出最后状态大于零的输出层神经元状态,并且按照编号由小到大顺序输出。
若输出层的神经元最后状态都不大于零,则输出 NULL。
【数据范围】
1≤n≤100
【输入样例】
5 6
1 0
1 0
0 1
0 1
0 1
1 3 1
1 4 1
1 5 1
2 3 1
2 4 1
2 5 1
【输出样例】
3 1
4 1
5 1
【算法分析】
● 拓扑序列:https://blog.csdn.net/hnjzsyjyj/article/details/129811447
● 链式前向星:https://blog.csdn.net/hnjzsyjyj/article/details/139369904
val[idx]:存储编号为 idx 的边的值
e[idx]:存储编号为 idx 的结点的值
ne[idx]:存储编号为 idx 的结点指向的结点的编号
h[a]:存储头结点 a 指向的结点的编号
【算法代码】
#include <bits/stdc++.h>
using namespace std;
const int maxn=105;
const int maxm=maxn*maxn/2;
int val[maxm],e[maxn],ne[maxn],h[maxn],idx;
int f[maxn],u[maxn],din[maxn],dout[maxn];
int q[maxn];
int n,m;
void add(int a,int b,int w) {
val[idx]=w,e[idx]=b,ne[idx]=h[a],h[a]=idx++;
}
void topsort() {
int hh=0, tt=-1;
for(int i=1; i<=n; i++)
if(!din[i]) q[++tt]=i;
while(hh<=tt) {
int t=q[hh++];
for(int i=h[t]; i!=-1; i=ne[i]) {
int j=e[i];
if(--din[j]==0) q[++tt]=j;
}
}
}
int main() {
cin>>n>>m;
for(int i=1; i<=n; i++) {
cin>>f[i]>>u[i];
if(!f[i]) f[i]-=u[i];
}
memset(h,-1,sizeof h);
while(m--) {
int a,b,c;
cin>>a>>b>>c;
add(a,b,c);
dout[a]++;
din[b]++;
}
topsort();
for(int i=0; i<n; i++) {
int j=q[i];
if(f[j]>0) {
for(int k=h[j]; k!=-1; k=ne[k])
f[e[k]]+=f[j]*val[k];
}
}
bool flag=true;
for(int i=1; i<=n; i++)
if(!dout[i] && f[i]>0) {
cout<<i<<" "<<f[i]<<endl;
flag=false;
}
if(flag) cout<<"NULL"<<endl;
return 0;
}
/*
in:
5 6
1 0
1 0
0 1
0 1
0 1
1 3 1
1 4 1
1 5 1
2 3 1
2 4 1
2 5 1
out:
3 1
4 1
5 1
*/
【参考文献】
https://www.acwing.com/solution/content/3706/
https://blog.csdn.net/hnjzsyjyj/article/details/139369904
https://blog.csdn.net/hnjzsyjyj/article/details/129811447