【题目来源】
龙龙是“饱了呀”外卖软件的注册骑手,负责送帕特小区的外卖。
帕特小区的构造非常特别,都是双向道路且没有构成环 —— 你可以简单地认为小区的路构成了一棵树,根结点是外卖站,树上的结点就是要送餐的地址。
每到中午 12 点,帕特小区就进入了点餐高峰。
一开始,只有一两个地方点外卖,龙龙简单就送好了;但随着大数据的分析,龙龙被派了更多的单子,也就送得越来越累……
看着一大堆订单,龙龙想知道,从外卖站出发,访问所有点了外卖的地方至少一次(这样才能把外卖送到)所需的最短路程的距离到底是多少?
每次新增一个点外卖的地址,他就想估算一遍整体工作量,这样他就可以搞明白新增一个地址给他带来了多少负担。
【输入格式】
输入第一行是两个数 N 和 M,分别对应树上节点的个数(包括外卖站),以及新增的送餐地址的个数。
接下来首先是一行 N 个数,第 i 个数表示第 i 个点的双亲节点的编号。节点编号从 1 到 N,外卖站的双亲编号定义为 −1。
接下来有 M 行,每行给出一个新增的送餐地点的编号 Xi。保证送餐地点中不会有外卖站,但地点有可能会重复。
为了方便计算,我们可以假设龙龙一开始一个地址的外卖都不用送,两个相邻的地点之间的路径长度统一设为 1,且从外卖站出发可以访问到所有地点。
注意:所有送餐地址可以按任意顺序访问,且完成送餐后无需返回外卖站。
【输出格式】
对于每个新增的地点,在一行内输出题目需要求的最短路程的距离。
【数据范围】
2≤N≤10^5,
1≤M≤10^5
【输入样例】
7 4
-1 1 1 1 2 2 3
5
6
2
4
【输出样例】
2
4
4
6
【算法分析】
★ dis[u] 表示当前点 u 到根结点的距离
★ 由于不要求返回外卖站,不难想到最后一餐只要送完即可。
每条枝上的餐送完后我们都要返回外卖站才能前往其它枝,因此要想路程最短,最后一个送餐地址应距离外卖站最远,则最短路程=路过边数*2-最远送餐点距离。
★ 当前结点到根结点的距离 = 当前结点的父结点到根结点的距离 + 1
【算法代码一】
#include <bits/stdc++.h>
using namespace std;
const int maxn=1e5+5;
int dis[maxn];
int fa[maxn];
int st[maxn];
int maxdep; //最大深度
int cnt; //走过的边数
int dfs(int x) { //返回该结点到根结点的距离
if(fa[x]==-1 || st[x]==1) {
return dis[x];
}
st[x]=1;
cnt++; //走过的边数+1
return dis[x]=dfs(fa[x])+1;
}
int main() {
int n,m;
cin>>n>>m;
for(int i=1; i<=n; i++) cin>>fa[i];
while(m--) {
int x;
cin>>x;
int cur=dfs(x); //当前送餐点的深度
maxdep=max(cur, maxdep);
cout<<cnt*2-maxdep<<endl;
}
return 0;
}
/*
in:
7 4
-1 1 1 1 2 2 3
5
6
2
4
out:
2
4
4
6
*/
【算法代码二】
#include <bits/stdc++.h>
using namespace std;
const int maxn=1e5+5;
int dis[maxn];
int fa[maxn];
int sum,maxx;
int dfs(int u) {
if(fa[u]==-1 || dis[u]>0) return dis[u];
sum++;
dis[u]=dfs(fa[u])+1;
return dis[u];
}
int main() {
int n,m;
cin>>n>>m;
for(int i=1; i<=n; i++) cin>>fa[i];
while(m--) {
int x;
cin>>x;
maxx=max(maxx, dfs(x));
cout<<2*sum-maxx<<endl;
}
return 0;
}
/*
in:
7 4
-1 1 1 1 2 2 3
5
6
2
4
out:
2
4
4
6
*/
【参考文献】
https://blog.csdn.net/DeskOneRice/article/details/128957890
https://www.acwing.com/solution/content/120507/
https://www.acwing.com/solution/content/237619/