洛谷 P2341:受欢迎的牛G ← Tarjan 算法 + SCC + 缩点

【题目来源】
https://www.luogu.com.cn/problem/P2341

【题目描述】
每头奶牛都梦想成为牛棚里的明星。被所有奶牛喜欢的奶牛就是一头明星奶牛。所有奶牛都是自恋狂,每头奶牛总是喜欢自己的。奶牛之间的“喜欢”是可以传递的——如果 A 喜欢 B,B 喜欢 C,那么 A 也喜欢 C。牛栏里共有 N 头奶牛,给定一些奶牛之间的爱慕关系,请你算出有多少头奶牛可以当明星。

【输入格式】
第一行:两个用空格分开的整数:N 和 M。
接下来 M 行:每行两个用空格分开的整数:A 和 B,表示 A 喜欢 B。

【输出格式】
一行单独一个整数,表示明星奶牛的数量。

【输入样例】
3 3
1 2
2 1
2 3

【输出样例】
1

【说明/提示】
只有 3 号奶牛可以做明星。

【数据范围】
对于 10% 的数据,N≤20,M≤50。
对于 30% 的数据,N≤10^3,M≤2×10^4。
对于 70% 的数据,N≤5×10^3,M≤5×10^4。
对于 100% 的数据,1≤N≤
10^4,1≤M≤5×10^4

【算法分析】
● 通过 Tarjan 算法求解各 SCC 并缩点,然后在缩点构成的有向无环图(DAG)中找是否存在唯一的出度为 0 的缩点,此缩点的大小即为问题的答案。
● 算法代码一中,out[] 数组用于存储‌缩点后构建的 DAG 中每个强连通分量(SCC)的出度‌。​​​​​​​

【算法代码一】
算法代码一采用 
https://blog.csdn.net/hnjzsyjyj/article/details/152905848 提供的Tarjan 算法模板。

#include <bits/stdc++.h>
using namespace std;

const int N=1e4+5;
const int M=1e5+5;
int e[M],ne[M],h[N],idx;
int stk[N],ins[N],top;
int dfn[N],low[N],timestamp;
int cnt,n,m;
int out[N]; //SCC's outdegree

void add(int a,int b) {
    e[idx]=b,ne[idx]=h[a],h[a]=idx++;
}

void tarjan(int u) {
    low[u]=dfn[u]=++timestamp;
    stk[++top]=u;
    ins[u]=1;

    for(int i=h[u]; i!=-1; i=ne[i]) {
        int v=e[i];
        if(!dfn[v]) {
            tarjan(v);
            low[u]=min(low[u],low[v]);
        } else if(ins[v]) {
            low[u]=min(low[u],dfn[v]);
        }
    }

    if(dfn[u]==low[u]) {
        cnt++;
        int v;
        do {
            v=stk[top--];
            ins[v]=0;
            dfn[v]=cnt;
        } while(u!=v);
    }
}

int main() {
    memset(h,-1,sizeof h);
    cin>>n>>m;
    for(int i=1; i<=m; i++) {
        int a,b;
        cin>>a>>b;
        add(a,b);
    }

    for(int i=1; i<=n; i++) {
        if(!dfn[i]) tarjan(i);
    }

    for(int i=1; i<=n; i++) {
        for(int j=h[i]; j!=-1; j=ne[j]) {
            int t=e[j];
            if(dfn[i]!=dfn[t]) out[dfn[i]]++;
        }
    }

    int id=0; //Store the SCC idx with 0 out-degree
    int ans=0;
    for(int i=1; i<=cnt; i++) {
        if(!out[i]) {
            if(id) id=-1;
            else id=i;
        }
    }

    if(id>0) {
        for(int i=1; i<=n; i++) {
            if(dfn[i]==id) ans++;
        }
    }
    cout<<ans<<endl;

    return 0;
}

/*
in:
3 3
1 2
2 1
2 3

out:
1
*/


【算法代码二】
算法代码二采用 https://blog.csdn.net/hnjzsyjyj/article/details/152907403 提供的 Tarjan 算法模板。

#include<bits/stdc++.h>
using namespace std;

const int N=1e4+5;
const int M=5e4+5;
int e[M],ne[M],h[N],idx;
int dfn[N],low[N],timestamp;
int stk[N],top;
vector<int> scc[N];
bool ins[N],vis[N];
int sccID[N],dis[N],n,m,cnt;

void add(int a,int b) {
    e[idx]=b,ne[idx]=h[a],h[a]=idx++;
}

void tarjan(int u) {
    low[u]=dfn[u]=++timestamp;
    stk[++top]=u;
    ins[u]=1;

    for(int i=h[u]; i!=-1; i=ne[i]) {
        int v=e[i];
        if(!dfn[v]) {
            tarjan(v);
            low[u]=min(low[u],low[v]);
        } else if(ins[v]) {
            low[u]=min(low[u],dfn[v]);
        }
    }

    if(dfn[u]==low[u]) {
        cnt++;
        int v;
        do {
            v=stk[top--];
            ins[v]=0, sccID[v]=cnt;
            scc[cnt].push_back(v);
        } while(u!=v);
    }
}

int main(void) {
    memset(h,-1,sizeof h);
    cin>>n>>m;
    while(m--) {
        int a,b;
        cin>>a>>b;
        add(a,b);
    }

    for(int i=1; i<=n; i++) {
        if(!dfn[i]) tarjan(i);
    }

    for(int x=1; x<=n; x++) {
        for(int i=h[x]; i!=-1; i=ne[i]) {
            int y=e[i];
            if(sccID[x]==sccID[y]) continue;
            dis[sccID[x]]++;
        }
    }

    int id=0,ans=0;
    for(int i=1; i<=cnt; i++) {
        if(dis[i]==0) ans++,id=i;
    }

    if(ans>1) cout<<0<<endl;
    else cout<<scc[id].size()<<endl;

    return 0;
}

/*
in:
3 3
1 2
2 1
2 3

out:
1
*/





【参考文献】
https://blog.csdn.net/hnjzsyjyj/article/details/152905848
https://blog.csdn.net/hnjzsyjyj/article/details/152907403
https://blog.csdn.net/zhaoxinxin1234/article/details/107208133
https://blog.csdn.net/m0_67985583/article/details/127161151


 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值