【题目来源】
https://www.luogu.com.cn/problem/P2341
【题目描述】
每头奶牛都梦想成为牛棚里的明星。被所有奶牛喜欢的奶牛就是一头明星奶牛。所有奶牛都是自恋狂,每头奶牛总是喜欢自己的。奶牛之间的“喜欢”是可以传递的——如果 A 喜欢 B,B 喜欢 C,那么 A 也喜欢 C。牛栏里共有 N 头奶牛,给定一些奶牛之间的爱慕关系,请你算出有多少头奶牛可以当明星。
【输入格式】
第一行:两个用空格分开的整数:N 和 M。
接下来 M 行:每行两个用空格分开的整数:A 和 B,表示 A 喜欢 B。
【输出格式】
一行单独一个整数,表示明星奶牛的数量。
【输入样例】
3 3
1 2
2 1
2 3
【输出样例】
1
【说明/提示】
只有 3 号奶牛可以做明星。
【数据范围】
对于 10% 的数据,N≤20,M≤50。
对于 30% 的数据,N≤10^3,M≤2×10^4。
对于 70% 的数据,N≤5×10^3,M≤5×10^4。
对于 100% 的数据,1≤N≤10^4,1≤M≤5×10^4。
【算法分析】
● 通过 Tarjan 算法求解各 SCC 并缩点,然后在缩点构成的有向无环图(DAG)中找是否存在唯一的出度为 0 的缩点,此缩点的大小即为问题的答案。
● 算法代码一中,out[] 数组用于存储缩点后构建的 DAG 中每个强连通分量(SCC)的出度。
【算法代码一】
算法代码一采用 https://blog.csdn.net/hnjzsyjyj/article/details/152905848 提供的Tarjan 算法模板。
#include <bits/stdc++.h>
using namespace std;
const int N=1e4+5;
const int M=1e5+5;
int e[M],ne[M],h[N],idx;
int stk[N],ins[N],top;
int dfn[N],low[N],timestamp;
int cnt,n,m;
int out[N]; //SCC's outdegree
void add(int a,int b) {
e[idx]=b,ne[idx]=h[a],h[a]=idx++;
}
void tarjan(int u) {
low[u]=dfn[u]=++timestamp;
stk[++top]=u;
ins[u]=1;
for(int i=h[u]; i!=-1; i=ne[i]) {
int v=e[i];
if(!dfn[v]) {
tarjan(v);
low[u]=min(low[u],low[v]);
} else if(ins[v]) {
low[u]=min(low[u],dfn[v]);
}
}
if(dfn[u]==low[u]) {
cnt++;
int v;
do {
v=stk[top--];
ins[v]=0;
dfn[v]=cnt;
} while(u!=v);
}
}
int main() {
memset(h,-1,sizeof h);
cin>>n>>m;
for(int i=1; i<=m; i++) {
int a,b;
cin>>a>>b;
add(a,b);
}
for(int i=1; i<=n; i++) {
if(!dfn[i]) tarjan(i);
}
for(int i=1; i<=n; i++) {
for(int j=h[i]; j!=-1; j=ne[j]) {
int t=e[j];
if(dfn[i]!=dfn[t]) out[dfn[i]]++;
}
}
int id=0; //Store the SCC idx with 0 out-degree
int ans=0;
for(int i=1; i<=cnt; i++) {
if(!out[i]) {
if(id) id=-1;
else id=i;
}
}
if(id>0) {
for(int i=1; i<=n; i++) {
if(dfn[i]==id) ans++;
}
}
cout<<ans<<endl;
return 0;
}
/*
in:
3 3
1 2
2 1
2 3
out:
1
*/
【算法代码二】
算法代码二采用 https://blog.csdn.net/hnjzsyjyj/article/details/152907403 提供的 Tarjan 算法模板。
#include<bits/stdc++.h>
using namespace std;
const int N=1e4+5;
const int M=5e4+5;
int e[M],ne[M],h[N],idx;
int dfn[N],low[N],timestamp;
int stk[N],top;
vector<int> scc[N];
bool ins[N],vis[N];
int sccID[N],dis[N],n,m,cnt;
void add(int a,int b) {
e[idx]=b,ne[idx]=h[a],h[a]=idx++;
}
void tarjan(int u) {
low[u]=dfn[u]=++timestamp;
stk[++top]=u;
ins[u]=1;
for(int i=h[u]; i!=-1; i=ne[i]) {
int v=e[i];
if(!dfn[v]) {
tarjan(v);
low[u]=min(low[u],low[v]);
} else if(ins[v]) {
low[u]=min(low[u],dfn[v]);
}
}
if(dfn[u]==low[u]) {
cnt++;
int v;
do {
v=stk[top--];
ins[v]=0, sccID[v]=cnt;
scc[cnt].push_back(v);
} while(u!=v);
}
}
int main(void) {
memset(h,-1,sizeof h);
cin>>n>>m;
while(m--) {
int a,b;
cin>>a>>b;
add(a,b);
}
for(int i=1; i<=n; i++) {
if(!dfn[i]) tarjan(i);
}
for(int x=1; x<=n; x++) {
for(int i=h[x]; i!=-1; i=ne[i]) {
int y=e[i];
if(sccID[x]==sccID[y]) continue;
dis[sccID[x]]++;
}
}
int id=0,ans=0;
for(int i=1; i<=cnt; i++) {
if(dis[i]==0) ans++,id=i;
}
if(ans>1) cout<<0<<endl;
else cout<<scc[id].size()<<endl;
return 0;
}
/*
in:
3 3
1 2
2 1
2 3
out:
1
*/
【参考文献】
https://blog.csdn.net/hnjzsyjyj/article/details/152905848
https://blog.csdn.net/hnjzsyjyj/article/details/152907403
https://blog.csdn.net/zhaoxinxin1234/article/details/107208133
https://blog.csdn.net/m0_67985583/article/details/127161151