The 15th Zhejiang Provincial Collegiate Programming Contest Sponsored by TuSimple(部分)

D - Sequence Swapping

题意:
             给你一个括号序列 s s ,每个括号有一个固定的权值v,每次操作你可以选定一个 k(1k<n) k ( 1 ⩽ k < n ) sk s k 为左括号且 sk+1 s k + 1 为右括号,交换 sk,sk+1 s k , s k + 1 ,获得 vskvsk+1 v s k ∗ v s k + 1 (可能为负)的分数,问最大能得到多少分。

思路:
             从右往左考虑每个左括号,对于第 i+1 i + 1 个左括号,不可能交换到第 i i 个左括号的右边,而且可以知道如果一个左括号和一个右括号交换了,不可能再次交换他们两,而且左括号不可能往左交换,那么可以设dp[i][j]:从右往左第i个左括号交换了j次的最大得分,那么会有dp[i][j]=max{dp[i1][k]+sum[i][j] | kjd} (其中 d d 是第i个左括号和第 i1 i − 1 个左括号之间的右括号的数量, sum[i][j] s u m [ i ] [ j ] 是第 i i 个左括号向右交换j次的前缀和,只能和靠近它的最近 j j 个交换), kjd是因为如果第 i i 个左括号能交换j次,那么第i1个左括号必定至少交换了 jd j − d 次(第 i i 个左括号不可能在第i1个左括号的右边),然后只需要对 i1 i − 1 的求出的状态求一个后缀最大值即可。

#include<bits/stdc++.h>
typedef long long ll;
const int maxn = 1e3 + 10;
const ll INF = 4e18 + 10;
const ll mod = 1e9;
using namespace std;

int n, m, T, kase = 1;
char s[maxn];
ll dp[maxn][maxn];
ll sum[maxn][maxn];
ll val[maxn], max_dp[maxn];
int pres[maxn], idx[maxn];
int main() {
    scanf("%d", &T);
    while(T--) {
        scanf("%d %s", &n, s + 1);
        int cnt = 0;
        for(int i = 1; i <= n; i++) scanf("%lld", &val[i]);
        for(int i = 1; i <= n; i++) {
            sum[i][0] = 0; int t = 1;
            if(s[i] == '(') idx[cnt++] = i;
            for(int j = 1; j <= n; j++) {
                dp[i][j] = -INF;
                if(s[i] == '(' && j > i && s[j] == ')') {
                    sum[i][t] = sum[i][t - 1] + (ll)val[i] * val[j];
                    t++;
                }
            }
            pres[i] = t - 1;
        }
        idx[cnt++] = n + 1;
        dp[n + 1][0] = 0;
        for(int i = 1; i <= n; i++) dp[n + 1][i] = -INF;
        ll ans = 0;
        for(int i = n; i >= 1; i--) {
            if(s[i] == ')') continue;
            int id = upper_bound(idx, idx + cnt, i) - idx;
            int now = i, las = idx[id];
            int ds = las - now - 1;
            max_dp[n + 1] = -INF;
            for(int j = n; j >= 0; j--) max_dp[j] = max(max_dp[j + 1], dp[las][j]);
            for(int j = 0; j <= pres[i]; j++) {
                int res = max(0, j - ds);
                dp[i][j] = sum[i][j] + max_dp[res];
                ans = max(ans, dp[i][j]);
            }
        }
        printf("%lld\n", ans);
    }
    return 0;
}


E - LIS

题意:
             定义 Fi F i :在数组 a a 中以第i个元素结尾的最长严格上升子序列的长度。现在有一个 n n 个数的a数组,给出其 F F 数组,再给出a数组中每个元素 ai a i 的范围 li,ri l i , r i (liairi) ( l i ⩽ a i ⩽ r i ) ,要求构造出 a a 数组。

思路:
    假设 F F 值为1的是 a a 数组中的下标为i1,i2,i3...im (i1<i2<...<im) ( i 1 < i 2 < . . . < i m ) 的元素, F F 值为2的是 a a 数组中的下标为j1,j2,j3...jk(j1<j2<...<jk)的元素…..那么依据要求一定有:
             ai1ai2...aim a i 1 ⩾ a i 2 ⩾ . . . ⩾ a i m
             aj1aj2...ajk a j 1 ⩾ a j 2 ⩾ . . . ⩾ a j k
    ........         . . . . . . . .
             如果上述条件不满足, 比如 ai1<ai2 a i 1 < a i 2 ,那么 Fi2 F i 2 的值就是 2 2 而不是1了。所以首先满足上述条件,上述式子每个式子从右往左考虑,对于长度为 1 1 的,aim可以直接取 lim l i m (取的越小越好),因为这样对于约束条件才有更优的选择,然后 aix a i x lix l i x aix+1 a i x + 1 的最大值即可,这样确定了 F F 值为1的下标的元素值。
             对于 F F 值大于1的,假设现在考虑到 F F 值为t中的下标 xi 为 x i 的元素,那么 axi a x i 的值是这样取的:
对于 idx[1,xi1] i d x ∈ [ 1 , x i − 1 ] ,选择 Fidx=t1 F i d x = t − 1 的元素的最小值 min{aidx} min { a i d x } +1 + 1 ,这个就是 axi a x i 的下限值,然后再和 lxi,axi+1 l x i , a x i + 1 取个最大值就是 axi a x i 的答案了。 取前缀的最小值可用树状数组,然后更新长度为 t t 的元素值的时候,要把前面t1所有元素值的更新删除,对于对于 t t 他能取的元素只能是t1的元素的最小值,删除更新可以记录之前的所有更新操作,删除的时候相当于恢复下就好了。

#include<bits/stdc++.h>
typedef long long ll;
const int maxn = 1e5 + 10;
const int INF = 2e9 + 10;
using namespace std;

typedef pair<int, int> pa;
int F[maxn], l[maxn], r[maxn];
int n, m, T, kase = 1;
int a[maxn];
pa res[maxn];
int C[maxn], rec[maxn * 30], ct;

void update(int x, int val) { for( ; x <= n; x += x & -x) { C[x] = min(C[x], val); rec[ct++] = x; }  }
int get_min(int x) { int ans = INF; for( ; x; x -= x & -x) ans = min(ans, C[x]); return ans; }

bool cmp(pa a, pa b) {
    if(a.first != b.first) return a.first < b.first;
    return a.second > b.second;
}

int main() {
    scanf("%d", &T);
    while(T--) {
        ct = 0;
        scanf("%d", &n); int cnt = 0;
        for(int i = 1; i <= n; i++) {
            scanf("%d", &F[i]);
            res[cnt++] = pa(F[i], i);
            C[i] = INF;
        }
        for(int i = 1; i <= n; i++) scanf("%d %d", &l[i], &r[i]);
        sort(res, res + cnt, cmp);
        a[res[0].second] = l[res[0].second];
        update(res[0].second, l[res[0].second]);
        int id = cnt;
        for(int i = 1; i < cnt; i++) {
            if(res[i].first == 1) {
                int kk = res[i].second;
                a[kk] = max(l[kk], a[res[i - 1].second]);
                update(kk, a[kk]);
            } else {
                id = i; break;
            }
        }
        for(int from; id < cnt; id++) {
            from = id;
            while(from < cnt && res[id].first == res[from].first) {
                int tt = get_min(res[from].second - 1) + 1;
                int kk = res[from].second;
                int kn = res[from - 1].second;
                if(kk == res[id].second) a[kk] = max(tt, l[kk]);
                else a[kk] = max(a[kn], max(tt, l[kk]));
                from++;
            }
            for(int i = 0; i < ct; i++) C[rec[i]] = INF; ct = 0;
            while(id < from) { update(res[id].second, a[res[id].second]); id++; }
            id--;
        }
        for(int i = 1; i <= n; i++) printf("%d%c", a[i], i < n ? ' ' : '\n');
    }
    return 0;
}


F - Now Loading!!!

题意:
             n n 个数m个查询,第 i i 个查询给出一个数p, zi z i = j=1najlogpaj ∑ j = 1 n ⌊ a j ⌈ log p ⁡ a j ⌉ ⌋ ,求 (i=1mizi) mod 109 ( ∑ i = 1 m i ⋅ z i )   m o d   10 9

思路:
             对于一个数 p p ,我们知道logpx=k的话, 这个 k k 在题目给出的范围内是不会超过32的,可以枚举 k k ,然后x就有一个范围,先对 a a 数组排个序,可以知道logpaj=k j j 的范围[l,r],这样对于 j[l,r] j ∈ [ l , r ] 就转化成 ajk ⌊ a j k ⌋ ,对所有 k k 来个预处理前缀和即可。

#include<bits/stdc++.h>
typedef long long ll;
const int maxn = 1e5 + 10;
const int INF = 1e9 + 10;
const ll mod = 1e9;
using namespace std;

int n, m, T, kase = 1;
ll a[maxn], p;
ll sum[35][maxn];

int main() {
    scanf("%d", &T);
    while(T--) {
        scanf("%d %d", &n, &m);
        for(int i = 1; i <= n; i++) scanf("%lld", &a[i]);
        sort(a + 1, a + n + 1);
        for(int i = 1; i < 33; i++) {
            sum[i][0] = 0;
            for(int j = 1; j <= n; j++) {
                sum[i][j] = sum[i][j - 1] + a[j] / i;
                if(sum[i][j] >= mod) sum[i][j] -= mod;
            }
        }
        ll ans = 0, ttt = 1;
        while(m--) {
            scanf("%lld", &p);
            ll x = 1, pw = 1, tt = 0;
            for( ; pw < INF; x++) {
                ll l = pw + 1, r = pw * p;
                pw = pw * p;
                int t1 = upper_bound(a + 1, a + n + 1, r) - a - 1;
                int t2 = upper_bound(a + 1, a + n + 1, l - 1) - a - 1;
                tt += sum[x][t1] - sum[x][t2];
                if(tt < 0) tt += mod;
                if(tt >= mod) tt -= mod;
            }
            ans += ttt * tt;
            ans %= mod;
            ttt++;
        }
        ans %= mod;
        if(ans < 0) ans += mod;
        printf("%lld\n", ans);
    }
    return 0;
}

H - Game on a Tree

题意:
    一棵 n n 个节点以1为根带边权的有根树,开始时一棋子在根节点,有四种操作:
 1     1     棋子移动到当前所在节点(除了叶节点)的某个孩子节点,花费为其边权
 2     2     棋子放回根节点,花费为 0 0
 3  设置棋子当前位置为保存点,保存点只能有一个,花费为 0 0
 4  棋子放回保存点,花费为 0 0
    现在棋子要遍历所有叶节点,求最小花费。

思路:
             有个明显的性质就是:如果当前保存点在 v v ,访问完一个叶节点后,棋子要么还在v的子树中,要么返回 1 1 。就是说,假如x1,x2 x x 的两棵子树的根节点,那么如果棋子在x1这棵子树设置过保存点,后来要访问 x2 x 2 的叶节点的话,棋子只能范围 1 1 ,再经过x到达 x2 x 2 去访问。那么其实也就是说明:根节点经过 x x 这个节点i次的话, x x 这棵子树会有i个互不影响的保存点, 那么设 dp[x][i] d p [ x ] [ i ] :
             对于 x x 这棵子树有i次设置保存点机会时必须遍历完 x x 这棵子树的最小花费(花费只在x这棵子树内)。
             可以知道这里 1isizex 1 ⩽ i ⩽ s i z e x sizex s i z e x x x 这棵子树内叶节点的个数, 既然x i i 次保留机会,那么x的每个孩子节点 v v 的保留机会次数j的和也应该是 i i ,但是对于孩子节点状态转移的时候保留次数j可以为0,这个时候相当于要每次访问完 v v 的一个叶节点要返回x节点,那么状态转移就是:

dp[x][i]=min{vsonx(dp[v][jv]+wxv)},(vsonxjv=i) d p [ x ] [ i ] = min { ∑ v ∈ s o n x ( d p [ v ] [ j v ] + w x v ) } , ( ∑ v ∈ s o n x j v = i )

             最终取根节点的所有保留次数的最小值就行了。

#include<bits/stdc++.h>
typedef long long ll;
const ll INF = 1e18;
const int maxn = 200 + 10;
using namespace std;

typedef pair<int, int> pa;
int T, n, m, kase = 1, vis[maxn], cnt;
ll dp[maxn][maxn], w[maxn][maxn];
vector<pa> G[maxn], nG[maxn];
int anc[maxn][maxn], pre[maxn], vt[maxn];
ll tot_w[maxn], sz[maxn];
ll dpw[maxn][maxn * 2];

void dfs(int x, int fa, int w) {
    pre[x] = fa; tot_w[x] = 0;
    nG[fa].push_back(pa(x, w));
    if(x != 1 && G[x].size() == 1) sz[x] = 1;
    else sz[x] = 0;
    for(int i = 0; i < G[x].size(); i++) {
        int to = G[x][i].first;
        if(to != fa) {
            dfs(to, x, G[x][i].second);
            sz[x] += sz[to];
            tot_w[x] += tot_w[to] + sz[to] * G[x][i].second;
        }
    }
}

void solve_dp(int x) {
    if(!nG[x].size()) { dp[x][1] = 0; return ; }
    for(int i = 0; i < nG[x].size(); i++) solve_dp(nG[x][i].first);
    int max_sz = sz[x], s = nG[x][0].first; ///最多需要max_sz次保留机会

    for(int i = 0; i <= max_sz; i++) {
        if(!i) dpw[0][i] = tot_w[s] + (ll)nG[x][0].second * sz[s];
        else dpw[0][i] = dp[s][i] + (ll)nG[x][0].second * i;
    }
    for(int i = 1; i < nG[x].size(); i++) {
        int to = nG[x][i].first;
        int w = nG[x][i].second;
        int son_to = sz[to];
        for(int j = max_sz; j >= 0; j--) dpw[i][j] = INF;
        for(int j = max_sz; j >= 0; j--) {
            for(int k = 0; k <= son_to; k++) {
                ll now_w = INF;
                int las = j - k;
                if(las < 0) break;
                if(!k) now_w = tot_w[to] + (ll)sz[to] * w; ///没有给保留机会
                else now_w = dp[to][k] + (ll)k * w; ///给了k次保留机会
                dpw[i][j] = min(dpw[i][j], dpw[i - 1][las] + now_w);
            }
        }
    }
    for(int i = 1; i <= max_sz; i++) dp[x][i] = dpw[nG[x].size() - 1][i];
}

int main() {
    scanf("%d", &T);
    while(T--) {
        scanf("%d", &n);
        for(int i = 0; i <= n; i++) {
            G[i].clear();
            nG[i].clear();
        }
        for(int i = 1; i < n; i++) {
            int u, v, c;
            scanf("%d %d %d", &u, &v, &c);
            G[u].push_back(pa(v, c));
            G[v].push_back(pa(u, c));
        }
        for(int i = 0; i <= n; i++) {
            for(int j = 0; j <= n; j++) {
                dp[i][j] = INF;
            }
        }
        dfs(1, 0, 0); solve_dp(1);
        ll ans = INF;
        for(int i = 1; i <= n; i++) ans = min(ans, dp[1][i]);
        printf("%lld\n", ans);
    }
    return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值