PowerOJ 最长递增子序列问题(网络流)

思路:
             先处理出 dp[i] d p [ i ] : 以第 i i 个元素结尾的最长上升子序列的长度。然后只能用一次的,每个点拆成入点和出点,能从上一个状态转移过来的连一条容量为1的边,源点连向 dp[i]=1 d p [ i ] = 1 i i 容量为1 dp[i]=ans d p [ i ] = a n s 的连向汇点容量为 1 1 ,求最大流即为第二问答案,第三问把x1 xn x n 改为可以用无穷次即可,在求下最大流。

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>
#include<queue>
typedef long long ll;
const int maxn = 1e5 + 10;
const int INF = 1e9 + 10;
using namespace std;

struct st {
    int to, cap, re;
    st(int t = 0, int c = 0, int r = 0) : to(t), cap(c), re(r) {}
};
int n, m, s, t;
vector<st> G[maxn];
int it[maxn], lv[maxn];

void add(int f, int t, int c) {
    G[f].push_back(st(t, c, G[t].size()));
    G[t].push_back(st(f, 0, G[f].size() - 1));
}

void bfs() {
    memset(lv, -1, sizeof(lv));
    queue<int> q;
    lv[s] = 0;
    q.push(s);
    while(!q.empty()) {
        int u = q.front(); q.pop();
        for(int i = 0; i < G[u].size(); i++) {
            st &e = G[u][i];
            if(e.cap > 0 && lv[e.to] < 0) {
                lv[e.to] = lv[u] + 1;
                q.push(e.to);
            }
        }
     }
}

int dfs(int v, int t, int f) {
    if(v == t) return f;
    for(int &i = it[v]; i < G[v].size(); i++) {
        st &e = G[v][i];
        if(e.cap > 0 && lv[v] < lv[e.to]) {
            int d = dfs(e.to, t, min(f, e.cap));
            if(d > 0) {
                e.cap -= d;
                G[e.to][e.re].cap += d;
                return d;
            }
        }
    }
    return 0;
}

int maxflow() {
    int f = 0;
    while(1) {
        bfs();
        if(lv[t] < 0) return f;
        memset(it, 0, sizeof(it));
        int fl;
        while((fl = dfs(s, t, INF)) >0) f += fl;
    }
}

int dp[maxn], a[maxn];

void solve(int ans) {
    s = 0; t = 2 * n + 1;
    for(int i = s; i <= t; i++) G[i].clear();
    for(int i = 1; i <= n; i++) {
        int k1 = 2 * i - 1, k2 = 2 * i;
        add(k1, k2, 1);
        if(dp[i] == ans) add(k2, t, 1);
        if(dp[i] == 1) add(s, k1, 1);
        for(int j = 1; j < i; j++) {
            if(dp[j] == dp[i] - 1 && a[j] < a[i]) add(2 * j, k1, 1);
        }
    }
}

int main() {
    scanf("%d", &n);
    memset(dp, 0, sizeof dp);
    int ans = 1;
    for(int i = 1; i <= n; i++) {
        scanf("%d", &a[i]);
        dp[i] = 1;
        for(int j = 1; j < i; j++) {
            if(a[i] <= a[j]) continue;
            if(dp[j] + 1 < dp[i]) continue;
            dp[i] = dp[j] + 1; ans = max(ans, dp[i]);
        }
    }
    int ans1, ans2;
    solve(ans);
    ans2 = ans1 = maxflow();
    add(1, 2, INF);
    add(2 * n - 1, 2 * n, INF);
    add(s, 1, INF);
    if(dp[n] == ans) add(2 * n, t, INF);
    ans2 += maxflow();
    printf("%d\n%d\n%d\n", ans, ans1, ans2);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值