Problem Description
假设有x1个字母A, x2个字母B,..... x26个字母Z,同时假设字母A的价值为1,字母B的价值为2,..... 字母Z的价值为26。那么,对于给定的字母,可以找到多少价值<=50的单词呢?单词的价值就是组成一个单词的所有字母的价值之和,比如,单词ACM的价值是1+3+14=18,单词HDU的价值是8+4+21=33。(组成的单词与排列顺序无关,比如ACM与CMA认为是同一个单词)。
Input
输入首先是一个整数N,代表测试实例的个数。
然后包括N行数据,每行包括26个<=20的整数x1,x2,.....x26.
然后包括N行数据,每行包括26个<=20的整数x1,x2,.....x26.
Output
对于每个测试实例,请输出能找到的总价值<=50的单词数,每个实例的输出占一行。
Sample Input
21 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 09 2 6 2 10 2 2 5 6 1 0 2 7 0 2 2 7 5 10 6 10 2 10 6 1 9
Sample Output
7379297
#include<stdio.h>
#include<string.h>
int num[30],val[30];
int c1[1000],c2[10000];
int main()
{
int n,i,j,k,sum;
for(i=1;i<=26;i++)
{
val[i]=i;
}
while(scanf("%d",&n)!=EOF)
{
while(n--)
{
memset(c1,0,sizeof(c1));
memset(c2,0,sizeof(c2));
for(i=1;i<=26;i++)
scanf("%d",&num[i]);
sum=0;
for(j=0;j<=val[1]*num[1]&&j<=50;j+=val[1])//限制了每种的个数 最多为val[1]*num[1]
/*如 质量为1 的砝码有4个 则母函数第一个式子为为 1+x^1+x^2+x^3+x^4*/
c1[j]=1;
for(i=2;i<=26;i++)
{
for(j=0;j<=50;j++)//指向上一次已经计算过的式子的项
for(k=0;k+j<=50&&k<=num[i]*val[i];k+=val[i])//限制了每种的个数就要这样写了
{//k指向当前要成的式子的项
c2[k+j]+=c1[j];
}
for(k=0;k<=50;k++)
{
c1[k]=c2[k];
c2[k]=0;
}
}
for(i=1;i<=50;i++)
if(c1[i]) sum+=c1[i];
printf("%d\n",sum);
}
}
return 0;
}
#include<string.h>
int num[30],val[30];
int c1[1000],c2[10000];
int main()
{
int n,i,j,k,sum;
for(i=1;i<=26;i++)
{
val[i]=i;
}
while(scanf("%d",&n)!=EOF)
{
while(n--)
{
memset(c1,0,sizeof(c1));
memset(c2,0,sizeof(c2));
for(i=1;i<=26;i++)
scanf("%d",&num[i]);
sum=0;
for(j=0;j<=val[1]*num[1]&&j<=50;j+=val[1])//限制了每种的个数 最多为val[1]*num[1]
/*如 质量为1 的砝码有4个 则母函数第一个式子为为 1+x^1+x^2+x^3+x^4*/
c1[j]=1;
for(i=2;i<=26;i++)
{
for(j=0;j<=50;j++)//指向上一次已经计算过的式子的项
for(k=0;k+j<=50&&k<=num[i]*val[i];k+=val[i])//限制了每种的个数就要这样写了
{//k指向当前要成的式子的项
c2[k+j]+=c1[j];
}
for(k=0;k<=50;k++)
{
c1[k]=c2[k];
c2[k]=0;
}
}
for(i=1;i<=50;i++)
if(c1[i]) sum+=c1[i];
printf("%d\n",sum);
}
}
return 0;
}