hdu2802 母函数每种有限制 经典 很深刻

Problem Description
假设有x1个字母A, x2个字母B,..... x26个字母Z,同时假设字母A的价值为1,字母B的价值为2,..... 字母Z的价值为26。那么,对于给定的字母,可以找到多少价值<=50的单词呢?单词的价值就是组成一个单词的所有字母的价值之和,比如,单词ACM的价值是1+3+14=18,单词HDU的价值是8+4+21=33。(组成的单词与排列顺序无关,比如ACM与CMA认为是同一个单词)。
 

Input
输入首先是一个整数N,代表测试实例的个数。
然后包括N行数据,每行包括26个<=20的整数x1,x2,.....x26.
 

Output
对于每个测试实例,请输出能找到的总价值<=50的单词数,每个实例的输出占一行。
 

Sample Input
    
    
2
1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9 2 6 2 10 2 2 5 6 1 0 2 7 0 2 2 7 5 10 6 10 2 10 6 1 9
 

Sample Output
    
    
7
379297
 
#include<stdio.h>
#include<string.h>
int num[30],val[30];
int c1[1000],c2[10000];
int main()
{
 int n,i,j,k,sum;
 for(i=1;i<=26;i++)
 {
  val[i]=i;
 }
 while(scanf("%d",&n)!=EOF)
 {
  while(n--)
  {
   memset(c1,0,sizeof(c1));
   memset(c2,0,sizeof(c2));
   for(i=1;i<=26;i++)
    scanf("%d",&num[i]);
   sum=0;
   for(j=0;j<=val[1]*num[1]&&j<=50;j+=val[1])//限制了每种的个数 最多为val[1]*num[1]
    /*如 质量为1 的砝码有4个  则母函数第一个式子为为 1+x^1+x^2+x^3+x^4*/
    c1[j]=1;
   for(i=2;i<=26;i++)
   {
    for(j=0;j<=50;j++)//指向上一次已经计算过的式子的项
     for(k=0;k+j<=50&&k<=num[i]*val[i];k+=val[i])//限制了每种的个数就要这样写了
     {//k指向当前要成的式子的项
      c2[k+j]+=c1[j];
     }
     for(k=0;k<=50;k++)
     {
      c1[k]=c2[k];
      c2[k]=0;
     }
   }
   for(i=1;i<=50;i++)
    if(c1[i]) sum+=c1[i];
   printf("%d\n",sum);
  }
 }
 return 0;
 
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值