- 博客(654)
- 资源 (10)
- 收藏
- 关注
原创 基于Frida的OLLVM混淆代码动态分析技术研究
本文探讨了利用Frida框架动态分析OLLVM混淆Android应用的方法。针对OLLVM的三种主要混淆技术(字符串加密、控制流平坦化、指令替换),分别提出有效解决方案:通过Hook关键函数获取解密字符串、追踪输入输出分析平坦化代码、直接监控寄存器获取替换指令结果。研究表明,结合Frida的动态分析能力可有效突破静态分析局限,为逆向工程提供新思路。该方法避免了复杂数学推导,直接获取运行时关键数据,显著提升了分析效率。
2025-12-27 16:00:00
1855
原创 大模型赋能网安(二十三):终章——治理、合规与未来展望
本系列终章探讨AI安全治理的必要性,提出技术与治理并行的双螺旋架构:治理层基于NIST AI风险管理框架建立合规准则;运营层构建人机协同(HITL)机制,分三个级别处理安全事件。文章强调合规性挑战的解决方案(如差分隐私),并重构未来安全人才能力模型(AI架构师、提示工程师、领域专家)。系列总结指出:大模型加速了网络安全对抗节奏,人类角色将从执行者转变为策略制定者和AI训练者。在AI赋能的网络安全新时代,治理框架与人才转型是确保技术安全应用的关键。
2025-12-26 15:00:00
628
原创 大模型赋能网安(二十二):生态抉择——开源与闭源安全大模型的博弈与选型
生成式AI在网络安全领域面临开源与闭源模型的选择困境。闭源模型(如GPT-4)推理能力强但存在数据合规风险,开源模型(如LLaMA3)可私有化部署但需高成本微调。文章提出混合AI架构解决方案,通过智能路由网关按任务敏感度分流处理:高敏感任务使用本地部署的开源模型,低敏感复杂任务调用脱敏后的闭源API。技术实现包括模型量化、LoRA微调等,并强调未来趋势是端侧AI发展。该方案在安全、成本与能力间取得平衡,为行业提供实用选型框架。
2025-12-26 09:00:00
1165
原创 大模型赋能网安(二十一):前沿探索——智能体(Agent)与自动化攻防体系的雏形
AIAgent技术正在重塑网络安全攻防体系,突破传统SOAR基于固定剧本的局限。智能体具备感知、记忆、规划和行动能力,能自主完成渗透测试等复杂任务。文章详细解析了ReAct范式的运作机制,包括目标设定、任务分解、工具调用和反思优化等环节,并通过Python代码演示了一个自主渗透测试Agent的实现。该技术实现了从自动化到自主化的跃升,能动态适应环境变化并自我纠错。。
2025-12-25 15:00:00
467
原创 大模型赋能网安(二十):前沿探索——多模态大模型在物理安全与视频分析中的应用
多模态大模型(MLLM)正在革新物理安全监控体系,实现从传统计算机视觉的简单目标检测到复杂场景语义理解的跨越。通过视觉编码、多模态推理和智能联动,MLLM能够分析视频中的行为逻辑(如尾随、暴力事件),并结合文本Prompt输出结构化威胁报告。技术亮点包括零样本目标检测、视觉问答(VQA)及隐私保护模糊化处理。未来,MLLM将推动物理安全与网络安全的融合,降低误报率并实现主动防御,如通过音频分析触发实时响应。这一进展标志着物理安全迈向通用人工智能的新阶段。
2025-12-25 09:00:00
705
原创 大模型赋能网安(十九):综合实战三——AI红蓝对抗:智能体攻防演练的全流程模拟
本文提出了一种基于大语言模型(LLM)的自动化红蓝对抗演练系统,通过构建红队攻击智能体和蓝队防御智能体,实现7x24小时的网络安全攻防模拟。系统采用闭环博弈架构,红队智能体不断生成变异SQL注入载荷尝试绕过防御,蓝队智能体则通过语义分析实时更新拦截规则。实验模拟了三轮对抗过程,展示了AI在自动载荷变异、语义理解防御等方面的能力。该方案为网络安全领域提供了自动化渗透测试和动态防御的新思路,通过持续对抗演练可不断优化防御策略,提升系统安全性。
2025-12-24 15:00:00
692
原创 大模型赋能网安(十八):综合实战二——构建高精度恶意URL与文件智能检测系统
本文提出了一种基于大模型的下一代网络威胁检测引擎,针对恶意URL和文件进行智能分析。传统方法依赖黑名单和静态特征匹配,易被DGA域名、同形异义字攻击等绕过。本系统采用混合架构: 预处理层:通过Redis缓存、威胁情报库和轻量模型快速过滤90%流量; 深度研判层:对大模型进行定向优化,如URL语义分析(识别品牌仿冒)和文件静态行为推断(通过PE元数据和高危API分析); 反馈闭环:将高置信结果回写缓存,实现系统自进化。
2025-12-24 09:00:00
641
原创 大模型赋能网安(十七):综合实战一——手把手构建智能安全分析助手 (ChatSOC)
ChatSOC是一款基于自然语言交互的智能安全运营助手,采用AI Agent架构实现"对话即运营"理念。该系统通过Python和大模型API构建,能够理解用户安全指令并自动调用工具链(如威胁情报查询、端口扫描等),最终生成综合分析报告。核心流程遵循感知-规划-行动-反馈循环,利用OpenAI的函数调用能力实现智能工具调度。演示代码展示了如何通过100行Python实现基础功能,包括工具定义、动态路由和多轮决策。
2025-12-23 15:00:00
581
原创 大模型赋能网安(十六):行业落地——金融、云原生与工业安全的智能化变革
本文探讨大模型在金融、云原生和工业互联网三大垂直领域的落地应用。在金融反欺诈场景中,大模型结合交易序列和社交行为分析识别诈骗模式;云原生领域通过理解IaC配置实现自动安全修复;工业互联网则利用大模型解析专有协议并检测物理异常。文章展示了如何通过微调和RAG技术,使通用模型具备行业知识,实现精准威胁感知,强调了大模型从“通用智能”向“领域智能”的转化价值,成为守护各行业安全的关键技术。
2025-12-23 09:00:00
772
原创 大模型赋能网安(十五):铸盾——安全大模型的对齐、微调与红队测试
本篇文章将深入探讨大模型安全治理的核心生命周期。我们将解构从**安全监督微调(Safety SFT)到人类反馈强化学习(RLHF)的对齐技术,并重点介绍如何构建自动化红队测试(Automated Red Teaming)**系统,利用“以模攻模”的策略,在模型上线前挖掘出潜在的越狱漏洞与幻觉风险。
2025-12-22 15:00:00
825
原创 大模型赋能网安(十四):幻影之战——生成式攻击(Deepfake与钓鱼)的深度防御
生成式人工智能(Generative AI)是一把双刃剑。在它极大提升生产力的同时,也为网络犯罪分子提供了核武器级别的工具。传统的网络诈骗往往伴随着蹩脚的语法、模糊的图片和一眼假的逻辑,但 AIGC 时代的攻击呈现出高逼真(High Fidelity)、**个性化(Personalized)和自动化(Automated)**的特征。
2025-12-22 09:00:00
977
原创 协议层的溃败:Next.js RSC 远程代码执行漏洞 (CVE-2025-66478) 核心技术解密
摘要: CVE-2025-66478是Next.js(v13.x-v14.x)中一个高危反序列化漏洞(CVSS 9.8),源于React Server Components(RSC)通信协议的安全缺陷。攻击者通过伪造node:child_process等Node内部模块的引用ID,绕过Webpack模块加载器的白名单校验,实现远程代码执行(RCE)。漏洞触发点位于react-server-dom-webpack的反序列化逻辑,允许恶意Flight协议数据调用系统函数(如execSync)。
2025-12-22 08:00:00
1284
原创 穿透版本控制的防线:Gogs 符号连接致远程代码执行漏洞 (CVE-2025-8110) 深度剖析
Gogs 是一款极受欢迎的、自托管的轻量级 Git 服务,使用 Go 语言编写。由于其部署简单、资源占用低,被广泛应用于中小型企业及个人开发者团队中。揭示了 Gogs 在处理 Git 仓库文件操作(特别是文件上传和在线编辑功能)时存在严重逻辑缺陷。攻击者可以通过构造包含恶意**符号连接(Symbolic Link)**的仓库,欺骗 Gogs 服务器将文件内容写入到仓库目录之外的任意位置。
2025-12-21 20:51:01
1026
原创 大模型赋能网安(十三):暗面——面向大模型的新型攻击面
摘要: 大模型(LLM)已成为黑客攻击的高价值目标,其独特的认知机制和概率生成特性催生了新型攻击方式。OWASP列出Top10风险,包括提示注入、数据投毒和模型窃取。攻击面分为输入侧(如提示注入越狱)、数据侧(如训练集投毒植入后门)和模型侧(如API窃取模型参数)。典型攻击包括:通过自然语言覆盖系统指令的提示注入、污染训练数据触发恶意行为的投毒攻击,以及间接注入(如RAG系统读取含恶意指令的网页)。防御需结合分隔符隔离、对抗训练和多层过滤,但尚无完美方案。
2025-12-21 10:00:00
1008
原创 大模型赋能网安(十二):源头治理——智能代码审计与供应链安全
大模型技术正在革新代码安全审计领域,通过深度语义分析有效解决了传统SAST工具的高误报率和逻辑漏洞检测难题。在CI/CD流程中,智能审计Agent可同时执行静态代码分析和供应链风险评估,不仅能精准识别IDOR等业务逻辑漏洞,还能自动生成修复代码并评估第三方组件风险。关键技术包括:1)基于数据流/控制流分析的深层漏洞检测;2)自动生成符合代码风格的修复补丁;3)通过可达性分析降低SCA误报;4)智能识别依赖混淆攻击。
2025-12-20 10:00:00
907
原创 大模型赋能网安(十一):运营革命——从 ChatOps 到智能驾驶舱
大模型(LLM)为安全运营中心(SOC)带来自动化革新,解决传统人力密集型模式的效率瓶颈。核心应用包括:1)自然语言转查询(Text-to-Query),通过Schema映射将分析师的自然语言指令转换为SIEM复杂语法(如SPL/SQL),降低学习成本;2)自动化根因分析,模型执行查询后关联日志数据,识别异常模式;3)智能报告生成,将零散日志转化为结构化事件报告。架构上采用四层设计(交互-转换-推理-生成),通过ChatOps实现“AI运营副驾驶”。
2025-12-19 15:00:00
635
原创 大模型赋能网安(十):重塑检测——基于语义理解的智能威胁狩猎
本文探讨如何利用大语言模型(LLM)重构网络安全威胁检测体系。传统基于签名的检测方法在面对混淆攻击、无文件攻击时效果有限。基于LLM的智能检测通过语义分析、代码去混淆和微弱信号关联,实现从特征匹配到意图理解的升级。系统架构包含触发初筛、上下文增强、大模型推理和智能研判四个环节,可有效降低误报率并发现高级威胁。关键技术包括自然语言日志解析、恶意脚本去混淆和RAG驱动的APT线索发现。实验表明,LLM能穿透代码混淆层理解真实意图,并辅助生成威胁狩猎规则,推动网络安全从自动化向智能化演进。
2025-12-19 09:00:00
1723
原创 大模型赋能网安(九):破局——传统安全技术栈的困境与智能化重构
传统企业网络安全体系依赖IDS/IPS、SIEM和SOAR“三驾马车”,在应对已知威胁时表现良好,但面对复杂攻击时存在规则僵化、上下文缺失和自动化机械性等问题。文章探讨如何通过大模型引入语义理解和概率推理,推动安全架构向“认知型防御”演进。新架构采用人机协同闭环模型,通过AI认知层实现L1初筛、L2语义研判和L3动态决策,克服传统线性架构的局限性。
2025-12-18 15:00:00
1475
原创 大模型赋能网安(八):数据为王——日志、流量与情报的“喂养”艺术
本文探讨了如何将网络安全数据适配大模型处理的技术方案。针对日志、流量和威胁情报三类核心数据源,提出预处理、序列化和降噪方法:日志需去除冗余字段提取关键实体,二进制流量需转化为文本元数据(如Zeek日志),威胁情报需转换为结构化摘要。文章强调数据质量决定模型表现,提出”文本化是关键、信噪比决定智商、Token经济学“三大原则,通过优化数据格式可显著提升模型推理准确率。关键技术包括PCAP转文本摘要、日志降噪和智能截断,以解决大模型处理安全数据时的“垃圾进垃圾出”问题。
2025-12-18 09:00:00
686
原创 大模型赋能网安(七):安全数据基座——当大模型遇见杀伤链与ATT&CK
本文探讨了如何利用大语言模型(LLM)解决网络安全运营中的“告警疲劳”问题。通过将底层安全日志映射到CyberKillChain和MITRE ATT&CK框架,系统实现了从离散告警到完整攻击叙事的转化。技术架构包含数据摄入、向量化处理、语义映射和决策输出四个层级,采用Embedding技术实现日志与攻击战术的语义匹配,再通过大模型推理构建攻击时间线。这种方案显著提升了安全分析的自动化水平和态势感知能力,标志着网络安全防御从特征匹配迈入认知智能时代。
2025-12-17 20:01:11
990
原创 大模型赋能网安(六):从通用智能到安全专家——预训练、微调与提示工程实战指南
本文探讨如何将通用大模型转化为网络安全领域的垂直专家,提出了三阶段能力构建路径:预训练阶段通过持续训练注入安全领域知识;微调阶段利用高质量指令数据集训练专业技能;提示工程阶段通过精心设计的Prompt激发模型推理潜能。文章详细分析了各阶段技术要点,包括预训练数据选择、微调数据格式转换、提示策略设计等,并提供了代码示例演示如何构建安全领域的微调数据集。
2025-12-16 09:00:00
1217
1
原创 大模型赋能网安(五):彻底搞懂 Transformer 架构与注意力机制
本文深入解析Transformer的自注意力机制如何革新网络安全检测。传统RNN因遗忘和串行处理缺陷,难以捕捉长距离攻击特征。Transformer通过位置编码和并行计算实现全局分析,其核心自注意力机制利用Q、K、V矩阵建立跨Token关联,如同安全分析师同时追踪攻击链各环节。文章通过数学推导和Python代码实现,演示了恶意代码检测中自注意力权重的可视化过程,并阐释多头注意力如何多维度捕捉攻击特征。
2025-12-15 15:00:00
924
原创 大模型赋能网安(四):全景图景——重构安全作业流
大模型正在重构网络安全作业流程,实现从单点突破到全链条智能化的转变。本文从威胁检测、安全运营和代码安全三大支柱出发,系统阐述大模型在网络安全领域的全景应用。通过一个”智能安全路由“的Python代码示例,展示了如何利用大模型作为自然语言接口,实现安全任务的智能调度与执行。这种Agent模式将改变传统安全工具的孤立状态,构建人机协同的新型安全架构,推动网络安全向智能化生态系统演进。
2025-12-15 09:00:00
518
原创 大模型赋能网安(三):核心革命——从特征工程到语义智能
大模型(LLM)在网络安全领域实现了“降维打击”,其核心优势在于:1)通过注意力机制实现深度语义理解,能识别传统技术难以捕捉的长距离依赖关系;2)摆脱人工特征工程,直接处理原始数据并自动生成高维向量(Embedding)。代码示例展示了如何利用语义相似度检测不含敏感词的隐蔽攻击,证明大模型能理解“意图”而非仅匹配关键词。这种端到端的语义理解能力使防御者首次获得与攻击者对等的博弈资本,从根本上改变了安全检测范式。
2025-12-14 15:00:00
768
原创 大模型赋能网安(二):从规则引擎到大模型的演进
网络安全技术经历了从规则匹配、机器学习到大模型时代的演进过程。早期基于if-else规则匹配的方法虽高效但易被绕过;机器学习通过统计特征(如熵值)提升了检测变种攻击的能力,却面临黑盒和误报问题;如今大模型通过语义理解和代码审计,实现了对恶意意图的精准识别与解释。这三个阶段体现了网络安全技术从语法检测到语义理解的质变,大模型补全了传统安全体系中缺失的认知能力,为安全分析带来突破性进展。
2025-12-14 09:00:00
276
原创 大模型赋能网安(一):课程导论与新范式
本文是《大模型赋能网络安全》系列的开篇,探讨AIGC时代网络安全从规则防御向语义理解的智能转变。通过代码对比展示大模型如何替代传统正则检测:传统方法依赖复杂规则库(如SQL注入检测),而大模型通过语义分析直接理解攻击意图,显著提升对变种攻击的识别能力。系列课程将分四个阶段:基础架构解析、核心实战(威胁检测、代码审计)、对抗研究(Prompt注入等)和垂直应用开发,旨在培养“AI Native”安全思维,使学习者具备开发智能安全Agent的能力。
2025-12-13 15:00:00
236
原创 大模型安全(四十二):安全研究与实践之零信任Agent架构:微隔离与持续验证
本文提出将零信任架构应用于大模型安全领域,通过Python实现工具微隔离和持续验证两大机制。工具微隔离利用Docker SDK构建临时沙箱执行代码,防止主机逃逸;持续验证则通过AI监察员实时审计操作意图,强制"人在回路"审批。实验表明,该方法能有效隔离恶意代码执行(如读取/etc/shadow)和阻止危险操作(如删除数据库)。关键词:零信任、AIAgent、工具微隔离、持续验证、沙箱安全。
2025-12-13 09:00:00
396
原创 大模型安全(四十一):高级技能专项之利用多模态大模型突破验证码防御
本文探讨了利用多模态大模型(MLLM)破解现代语义验证码的新方法。传统OCR技术在应对“点击所有消防栓”等语义验证码时失效,而GPT-4V、LLaVA等MLLM凭借视觉推理能力可准确理解验证码语义要求。文章对比了传统OCR与MLLM方案的优劣,提出分级处理策略,并演示了基于Playwright和MLLM的智能验证码求解器实现方案。研究揭示,AI时代基于图灵测试的验证码防御体系正面临失效风险,未来安全防御需转向生物特征等多因素认证。
2025-12-12 15:00:00
372
原创 大模型安全(四十):高级技能专项之验证码突破——基于多模态LLM的智能识别
本文探讨了利用多模态大模型(MLLM)破解现代语义验证码的技术方案。传统OCR方法在面对“点击图中的茶杯”等语义验证码时已失效,而GPT-4V、LLaVA等MLLM凭借视觉推理能力可准确理解复杂指令。文章对比了传统YOLO/OCR与MLLM方案的优劣,并演示了构建智能验证码求解器的Python实现,该系统能自动识别文本验证码并调用MLLM处理语义验证码。
2025-12-12 09:00:00
902
原创 大模型安全(三十九):核心技术栈之高性能Web框架 (FastAPI) 与流式响应安全
本文探讨使用FastAPI构建大模型安全API网关的关键技术。重点解决三大安全场景:1)通过Pydantic实现严格的输入Schema校验,防范Prompt Injection攻击;2)利用依赖注入实现无缝身份鉴权;3)基于SSE技术实现流式响应转发,并在传输过程中实时审计输出内容(“流式阻断”)。相比传统框架,FastAPI凭借异步特性可高效处理长连接和高并发请求,Pydantic提供严格数据验证,SSE技术支持实时内容审查。
2025-12-11 15:00:00
530
原创 大模型安全(三十八):核心技术栈之SQLAlchemy与pgvector:构建语义防火墙的向量存储基座
本文提出了一种基于语义分析的智能防火墙方案,利用SQLAlchemy 2.0和PostgreSQL的pgvector插件构建混合存储系统,实现大模型安全防御的升级。系统通过将攻击样本向量化存储,采用余弦相似度进行语义检索,可有效识别变种提示注入攻击。相比传统关键词匹配,该系统能拦截语义相近但措辞变化的恶意Prompt,防御能力更强。文章详细介绍了数据建模、向量检索等核心实现,并演示了攻击检测过程,为构建轻量级高性能的语义安全防护提供了实用解决方案。
2025-12-11 09:00:00
248
原创 大模型安全(三十七):核心技术栈之Celery分布式任务队列与异构算力调度
本文提出基于Celery的分布式调度方案,解决LLM安全测评中的异构任务调度问题。针对API扫描(CPU密集型)和本地模型扫描(GPU密集型)任务差异,设计了双队列架构:api_queue处理高并发API请求并实现速率控制(60次/分钟),gpu_queue以单并发处理显存密集型任务。通过任务路由机制实现自动分发,结合Redis实现分布式调度。系统支持实时监控(Flower)和失败重试机制,确保安全扫描的稳定性和可靠性。该方案有效解决了资源冲突、API限速和异构计算等核心挑战。
2025-12-10 15:00:00
478
原创 大模型安全(三十六):核心技术栈之SQLAlchemy与pgvector:构建语义防火墙的向量存储基座
本文提出基于语义的AI安全防御方案,通过SQLAlchemy2.0和PostgreSQL(pgvector)构建混合存储系统,实现攻击样本的向量化存储与实时检测。系统将已知攻击Prompt转为Embedding向量存储,当用户输入文本时,通过计算其与攻击样本的余弦相似度进行毫秒级威胁判定。相比传统关键词匹配,该方法能有效拦截语义相近的变种攻击,如“忽略指令”的不同表述形式。文章详细介绍了数据建模、异步向量检索等核心实现,展示了轻量级语义防火墙的开发过程。
2025-12-10 09:00:00
276
原创 全平台代理配置指南:从终端到代码的完全掌握
在现代软件开发和网络管理中,代理(Proxy) 是一个绕不开的话题。无论是为了访问受限资源、加速依赖包下载、调试网络请求(如使用 Charles/Fiddler),还是为了隐藏真实 IP,掌握代理的配置技巧都是技术人员的必备技能。
2025-12-09 19:04:14
1156
原创 大模型安全(三十五):核心技术栈之Scrapy分布式爬虫与训练数据投毒检测
本文提出基于Scrapy框架构建分布式语料审计系统,用于保障大模型训练数据安全。通过自定义中间件实现实时数据投毒检测,集成正则表达式匹配后门触发词、PII敏感信息等功能。结合Scrapy-Redis构建可扩展的爬虫集群,在数据采集阶段即拦截污染源,形成大模型数据供应链的安全防线。系统支持百万级URL处理,在爬取过程中完成自动化“安全体检”,为模型训练提供清洁数据。
2025-12-09 15:00:00
1450
原创 大模型安全(三十四):核心技术栈之Selenium/Playwright自动化与反爬对抗
本文探讨浏览器自动化技术在Web安全领域的应用,对比Selenium与Playwright的特性差异,重点分析Playwright在网络拦截、异步支持和反爬对抗方面的优势。通过Python实战演示如何构建动态漏洞扫描器,实现自动登录、API接口发现和DOM XSS验证等功能。文章还介绍了使用Stealth技术对抗反爬检测的方法,指出Playwright结合AsyncIO可构建高性能安全工具,为现代Web安全测试提供新思路。
2025-12-09 09:00:00
1164
原创 大模型安全(三十三):核心技术栈之BeautifulSoup/lxml深度解析与数据清洗
本文对比了BeautifulSoup和lxml两大HTML解析库在安全开发中的应用差异。BeautifulSoup以容错性见长,适合处理混乱的HTML结构;lxml则凭借C语言级解析速度和XPath支持成为高性能爬虫首选。文章重点演示了如何结合两者构建Web攻击面提取器,自动识别隐藏表单字段、敏感注释和JS变量等安全隐患,并特别强调使用lxml时需禁用XML实体解析以防止XXE攻击。通过实战代码展示了安全扫描器中关键的数据解析技术,为漏洞挖掘提供有效切入点。
2025-12-08 15:00:00
772
原创 大模型安全(三十二):核心技术栈之Requests/httpx高级应用与并发实战
本文探讨了Python安全工具开发中从requests迁移到httpx的必要性。针对大模型安全测试场景,httpx在异步IO和HTTP/2支持上的优势使其成为高性能扫描的首选。通过实战代码对比了requests多线程与httpx异步模式的性能差异,展示了后者3-10倍的效率提升。文章还介绍了连接池复用、并发控制信号量等优化技巧,以及通过HTTP/2协议和TLS指纹伪造提升隐蔽性的方法。
2025-12-08 09:00:00
878
原创 大模型安全(三十一):实战项目之红队测试实战与攻击方案设计
本文演示了针对企业级RAG应用“HR助手”的红队渗透测试。通过设计包含侦察、武器化、利用和窃取四个阶段的LLM KillChain攻击链,成功利用“开发者模式”越狱和自然语言SQL注入获取了CEO薪资数据。文中用Python构建了攻击控制台,模拟了脆弱Agent的防御机制被绕过过程,并分析了三个关键安全缺陷:过度依赖SystemPrompt、不安全的Text-to-SQL工具设计以及缺乏数据库权限隔离。
2025-12-07 15:00:00
1086
原创 大模型安全(三十):实战项目之大模型自动化安全测评系统开发
本文将设计并实现一个大模型自动化安全测评系统(LLM Security Benchmark System)。该系统对标业界主流的测评框架(如Helm, OpenCompass),旨在从安全性(Safety)、隐私性(Privacy)、公平性(Fairness)和鲁棒性(Robustness)四个维度对模型进行综合打分。我们将使用Python构建核心引擎,实现测试用例的自动生成与增强、基于LLM-as-a-Judge的智能化评分机制,以及最终的雷达图(Radar Chart)报告生成。
2025-12-07 09:00:00
1149
【Go语言编程】基于Goroutine的并发控制与Web服务构建:从基础语法到API开发的全流程实践
2025-11-02
【计算机体系结构】基于x86汇编语言的底层编程教学:DOSBox环境下的寄存器操作与猜数字游戏实战设计
2025-10-28
【嵌入式系统】基于交叉编译的Linux内核裁剪与根文件系统构建:ARM平台自定义操作系统设计
2025-10-27
【嵌入式系统】基于万用表与逻辑分析仪的硬件调试技术:从电源检测到协议解码的全流程故障排查方法
2025-10-26
【C语言开发】基于Makefile的自动化编译系统设计:多文件项目依赖管理与Debug/Release版本构建
2025-10-25
人工智能基于随机森林的客户流失预测系统:全栈Web应用设计与前后端集成实现
2025-10-25
【嵌入式系统】基于FreeRTOS的任务调度与线程安全机制解析:多任务实时系统中同步、通信与资源保护的设计与实现
2025-10-25
【工业自动化】Modbus、PROFINET、EtherCAT协议深度解析与应用:通信机制、CRC校验实现及TIA Portal组态实战
2025-10-22
系统编程基于Rust所有权与并发模型的高性能日志分析器设计:实现多线程安全数据处理与可扩展架构
2025-10-21
【嵌入式开发】Modbus RTU与MQTT双协议实战:工业物联网通信及高级调试技术详解
2025-10-20
电机控制基于PID算法的直流电机闭环调速系统设计:编码器反馈与H桥驱动集成开发
2025-10-19
【嵌入式开发】基于CRC校验与HardFault分析的通信协议设计及OTA升级系统实现
2025-10-16
【移动应用开发】基于Flutter的Task Manager App设计:企业级跨平台待办事项管理系统实现
2025-10-15
【数据库技术】基于SQL的电商数据分析实战:多表关联与窗口函数在销售趋势挖掘中的应用
2025-10-13
【Web前端开发】基于ES6+的JavaScript天气应用实战:API数据请求与动态DOM更新综合案例
2025-10-12
【Go语言高并发】基于Goroutine与Channel的企业级网络爬虫架构设计:构建高效分布式Octopus爬虫系统
2025-10-11
【PHP工程化开发】基于PDO与PSR-4的短链接服务构建:高性能URL缩短与重定向系统设计
2025-10-10
【C++并发编程】基于RAII锁机制与哈希表的线程安全内存键值数据库设计:企业级高性能KV存储系统TitanKV实现
2025-10-09
汇编语言深度实践VIP教程:从零到一开发经典“贪吃蛇”游戏
2025-10-08
Java智能聊天机器人开发教程与企业级案例文档.pdf
2025-10-06
【Java高并发】基于令牌桶算法的API限流器实现:企业级高可用系统设计与分布式扩展方案
2025-10-06
网络安全反连工具利器:多种协议命令执行
2025-09-23
ITIL-V4最新版(20190722).docx
2019-12-23
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅