人工智能
文章平均质量分 79
霍格沃兹测试开发学社
这个作者很懒,什么都没留下…
展开
-
语音识别模型
Whisper 是 OpenAI 的一项语音处理项目,旨在实现语音的识别、翻译和生成任务。作为基于深度学习的语音识别模型,Whisper 具有高度的智能化和准确性,能够有效地转换语音输入为文本,并在多种语言之间进行翻译。通过不断的优化和更新,Whisper 致力于提供更加优质和高效的语音处理解决方案,以满足不同场景和需求下的语音交互应用。原创 2024-10-29 17:11:20 · 686 阅读 · 0 评论 -
智谱 AI 大模型
大模型领域的经典成功商业案例。国内开源大模型的领先者,原创 2024-10-28 11:15:02 · 247 阅读 · 0 评论 -
mixtral大模型
Mixtral 是一种具有开放权重的高质量稀疏专家混合模型 (SMoE)。根据 Apache 2.0 许可。Mixtral 在大多数基准测试中都优于 Llama 2 70B,推理速度提高了 6 倍。它是最强大的开放权重模型,具有宽松的许可证,也是成本/性能权衡方面的最佳模型。特别是,它在大多数标准基准测试中匹配或优于 GPT3.5。Mixtral 是一种具有开放权重的高质量稀疏专家混合模型。原创 2024-10-16 17:08:58 · 326 阅读 · 0 评论 -
基于 LangChain 的自动化测试用例的生成与执行
自动化测试用例的生成与执行的实现原理。自动化测试用例的生成与执行的实现思路。利用 Agent 实现自动化测试用例的生成与执行。获取更多软件测试技术资料/面试题解析,请点击!原创 2024-09-27 17:03:41 · 587 阅读 · 0 评论 -
手工测试用例转Web自动化测试生成
在传统编写 Web 自动化测试用例的过程中,基本都是需要测试工程师,根据功能测试用例转换为自动化测试的用例。市面上自动生成 Web 或 App 自动化测试用例的产品无非也都是通过录制的方式,获取操作人的行为操作,从而记录测试用例。整个过程类似于但是通常录制出来的用例可用性、可维护性都不强,而且依然需要人手工介入录制的过程。在 LLM 问世之后,我们便在探索,是否有第二种可能性,由大模型执行功能测试用例,生成自动化测试用例?原创 2024-09-25 16:08:35 · 388 阅读 · 0 评论 -
大咖领衔,2天AI创业创收训练营即刻启程!不要错过,速来占位!
在这个日新月异的AI时代,我们诚邀您加入这场激动人心的AI创业创收2天训练营!这不仅是一次学习的机会,更是一次通往未来创收成功的加速器。原创 2024-09-23 17:15:09 · 163 阅读 · 0 评论 -
基于LangChain手工测试用例转App自动化测试生成工具
App 自动化测试用例生成工具需求说明。如何通过 LangChain 实现 App 自动化测试用例生成工具。原创 2024-09-19 17:20:51 · 978 阅读 · 0 评论 -
基于ChatGPT开发人工智能服务平台
ChatGPT 在刚问世的时候,其产品形态就是一个问答机器人。而基于ChatGPT的能力还可以对其做一些二次开发和拓展。比如模拟面试功能、或者智能机器人功能。模拟面试功能包括个性化问题生成、实时反馈、多轮面试模拟、面试报告。智能机器人功能提供24/7客服支持、自然语言处理、任务自动化、多渠道支持和数据分析与报告。原创 2024-09-18 15:10:22 · 404 阅读 · 0 评论 -
搭建企业内部的大语言模型系统
PrivateGPT 提供了一个 API,其中包含构建私有的、上下文感知的 AI 应用程序所需的所有构建块。该 API 遵循并扩展了 OpenAI API 标准,支持普通响应和流响应。这意味着,如果您可以在您的工具之一中使用 OpenAI API,则可以使用您自己的 PrivateGPT API,无需更改代码,并且如果您在本地模式下运行 privateGPT,则免费。原创 2024-09-10 15:37:30 · 936 阅读 · 0 评论 -
Hugging Face 的应用
社区联合国内 AI 领域合作伙伴与高校机构, 致力于通过开放的社区合作,构建深度学习相关的模型开源社区,并开放相关模型创新技术,推动基于“模型即服务”(Model-as-a-Service)理念的模型应用生态的繁荣发展。百度智能云千帆大模型平台(以下简称千帆或千帆大模型平台)是面向企业开发者的一站式大模型开发及服务运行平台。千帆不仅提供了包括文心一言底层模型和第三方开源大模型,还提供了各种 AI 开发工具和整套开发环境,方便客户轻松使用和开发大模型应用。原创 2024-09-09 18:51:34 · 1100 阅读 · 0 评论 -
大语言模型应用框架介绍
大语言模型的英文全称为:Large Language Model,缩写为 LLM,也被称为大型语言模型,主要指的是在大规模文本语料上训练、包含百亿级别参数的语言模型,它用来做自然语言相关任务的深度学习模型。自然语言的相关任务简单理解为:给到模型一个文本输入,经过训练的模型会给出相应的输出文本。通常被用来解决常见的语言问题,如:文本分类、问答、总结和文本生成等。了解什么是大语言模型应用框架。了解大语言模型应用框架的应用场景。了解常见的大语言模型应用框架。了解大语言模型的学习路线。原创 2024-09-04 14:17:21 · 396 阅读 · 0 评论 -
Mistral 大语言模型
这是一种具有开放权重的高质量稀疏专家混合模型 (SMoE)。它是最强大的开放权重模型,具有宽松的许可证,也是成本/性能权衡方面的最佳模型。我们通过突破性的创新打造开放、高效、有用且值得信赖的人工智能模型。我们的使命是让前沿人工智能无处不在,为所有建设者提供量身定制的人工智能。这需要强烈的独立性,对开放、便携和可定制解决方案的坚定承诺,以及对在有限时间内交付最先进技术的高度关注。它由 Meta Platforms 和 Google DeepMind 的前员工于 2023 年 4 月创立。原创 2024-09-03 11:51:19 · 587 阅读 · 0 评论 -
MetaLlama大模型
我们提供多种风格来覆盖广泛的应用程序:基础模型 (Code Llama)、Python 专业化 (Code Llama - Python) 和指令跟随模型 (Code Llama - Instruct),每个模型都有 7B、13B 和 34B 参数。我们的模型在我们测试的大多数基准上都优于开源聊天模型,并且根据我们对有用性和安全性的人工评估,可能是闭源模型的合适替代品。我们在数万亿个Token上训练我们的模型,并表明可以专门使用公开可用的数据集来训练最先进的模型,而无需诉诸专有的和无法访问的数据集。原创 2024-09-02 11:16:39 · 827 阅读 · 0 评论 -
基于LangChain手工测试用例转Web自动化测试生成工具
在传统编写 Web 自动化测试用例的过程中,基本都是需要测试工程师,根据功能测试用例转换为自动化测试的用例。市面上自动生成 Web 或 App 自动化测试用例的产品无非也都是通过录制的方式,获取操作人的行为操作,从而记录测试用例。整个过程类似于但是通常录制出来的用例可用性、可维护性都不强,而且依然需要人手工介入录制的过程。在 LLM 问世之后,我们便在探索,是否有第二种可能性,由大模型功能测试用例,自动化测试用例?测试工程师在编写用例的过程中,将操作步骤明确的表达出来。原创 2024-08-29 18:24:46 · 831 阅读 · 0 评论 -
清华大学ChatGLM大模型
经过约 1T 标识符的中英双语训练,辅以监督微调、反馈自助、人类反馈强化学习等技术的加持,62 亿参数的 ChatGLM-6B 已经能生成相当符合人类偏好的回答,更多信息请参考我们的博客。此外,如果需要在 cpu 上运行量化后的模型,还需要安装 gcc 与 openmp。多数 Linux 发行版默认已安装。为了方便下游开发者针对自己的应用场景定制模型,我们同时实现了基于 P-Tuning v2 的高效参数微调方法 (使用指南) ,INT4 量化级别下最低只需 7GB 显存即可启动微调。原创 2024-08-28 17:07:21 · 355 阅读 · 0 评论 -
实现定制化 AutoGPT 实战
其实 AutoGPT 中提示的 Command 其实只是一种由人类编写的程序函数,但它是提供给 GPT 调用的。其实整体的流程和上面的生成文件的信息差不多,只是需要修改一下提示词信息。如果作为一个比较有开发功底的人,如果我们想自己定制类似 AutoGPT 的效果,其实是比较容易的。在前面的学习过程中,已经了解到了 AutoGPT 基本的环境安装操作。使用过 ChatGPT 的同学应该都知道 ChatGPT 只能生成文本类结果,是无法直接生成文件的。所以需要根据使用的情况,输入适合自己的选项。原创 2024-08-27 11:55:27 · 980 阅读 · 0 评论 -
AutoGPT理念与应用
在 ChatGPT 问世之后,大家很容易就发现其依然具备一些很难解决的问题,比如:而 AutoGPT 的目标就是基于 GPT4 将 LLM 的 "思想 "串联起来,自主地实现你设定的任何目标。一句话来说,AutoGPT 是一个全能助手。只需要告诉其任务目标,他会自动完成中间可能涉及的一系列子任务,最终实现任务目标。AutoGPT 可以实现阅读、写作,以及网页浏览的功能,它能够根据任务目标自己创建 prompt,然后再来完成这个任务。AutoGPT 官网显示,它能做到的事情主要为:AutoGPT 支持以下多种原创 2024-08-26 18:25:36 · 620 阅读 · 0 评论 -
解锁未来财富密码:AI自动化副业创收班——终身财富加速器
副业创收已经成为行业趋势,在当前经济形势下,许多人面临着行业裁员的不确定性。为了增强个人的抗风险能力,寻求一份副业已经成为一种重要的趋势。这不仅是经济上的补充,更是对自由与独立的一种追求——它应让你自主掌控,不被外界束缚。通过精心打造的副业,你不仅可以灵活安排时间,享受到工作和生活的和谐共融,还能有额外的收入来源,有效改善现有生活质量。这不仅是一份额外的收益,更是对个人价值的再次挖掘与实现。目前,行业内流行的副业方向有小说推文、视频剪辑和直播带货等,但这些项目都需要大量的时间投入。原创 2024-08-22 18:54:18 · 666 阅读 · 0 评论 -
人工智能 | 结对编程助手GithubCopilot
GitHub Copilot 是一款 AI 结对程序员,可帮助您更快、更少地编写代码。它从注释和代码中提取上下文,以立即建议单独的行和整个函数。GitHub Copilot 由 GitHub、OpenAI 和 Microsoft 开发的生成式 AI 模型提供支持。它可作为 Visual Studio Code、Visual Studio、Neovim 和 JetBrains 集成开发环境 (IDE) 套件的扩展。官网地址:https://github.com/features/copilot。原创 2024-08-21 18:04:47 · 1067 阅读 · 0 评论 -
基于LangChain手工测试用例转接口自动化测试生成工具
接口自动化测试用例是一个老生常谈的问题,在未引入人工智能之前,也有非常多的生成方案,比如如下所示,通过har生成接口自动化测试用例:但是以上的生成方式依然是有一些弊端,比如 har 本身虽然能表述一定的接口信息和业务信息,但是毕竟无法用来表述全部的应用场景与用例场景。而大部分的应用场景和用例场景,均是通过自然语言进行描述的。而解析自然语言,则是大语言模型擅长做的事情。接下来,将通过这两个数据文件自动生成对应的测试用例。原创 2024-08-16 17:16:52 · 339 阅读 · 0 评论 -
大咖公开课 | AI自动化应用开发,让创意与效率并驾齐驱!
在这个日新月异的时代,人工智能(AI)与自动化技术的融合正以前所未有的速度重塑着各行各业。你是否梦想过,在信息的海洋中自动筛选出精华,用创意点亮每一篇内容,同时让繁琐的工作流程变得轻松高效?现在,机会来了!我们诚邀您参加即将开启的“AI自动化应用开发”公开课,一同探索如何用好AI与自动化,让您的职业生涯“走遍天下都不怕”!原创 2024-08-15 11:37:18 · 339 阅读 · 0 评论 -
打造领域专属的大语言模型
通过在原有大模型的基础上添加专业领域的数据,可以对模型进行微调,从而减少大模型出错的概率和降低模型出现幻觉的次数。上述准备好的数据可以保存进jsonl文件,主要在这个文件中,每行都是完整的一条json数据,即每一行都是完整的一次对话。微调允许我们在已有大模型的基础上,加入特定领域的新数据,从而增强模型在该领域的知识和表现能力。在开始微调之前,需要确认微调的方向并收集相应的专业知识,以便模型能够学习该领域的专业内容,这样,经过多次微调后,模型才能给出令人满意的结果。在准备好数据之后,就可以开始模型的微调。原创 2024-08-14 11:21:11 · 553 阅读 · 0 评论 -
打造企业专属人工智能助理
而如果要打造企业专属的人工智能助理,这个助理除了要具备“听懂人话的能力”,还需要具备执行动作的能力。所以本章节要完成的一个实践示例,就是让大模型具备“听懂人话”+“执行动作”的能力。智能助理由于具备“听懂人话”+“执行动作”的能力,所以其可拓展性是非常强的。而在前面介绍React 推理提示的时候讲到了,目前的大语言模型本身不具备任何的执行能力,只具备理解自然语言的能力。而 LangChain 其灵活性则更强,会在后面的章节进行进一步的介绍。只是越复杂的应用场景,中间牵涉到的工具和执行步骤也就越多越复杂。原创 2024-08-13 10:22:23 · 425 阅读 · 0 评论 -
打造垂直领域内容的问答机器人
如果使用 assistant 创建一个垂直领域内容的问答机器人,那么主要需要的,就是 Retrieval 的能力,注意这个能力至少需要 gpt-3.5-turbo-1106(支持较新版本)或 gpt-4-turbo-preview 型号。在大模型问世之后,其中一个最核心的功能就是问答机器人。垂直领域内容的问答机器人的应用场景非常多,比如金融、医疗、电商等。而在前面介绍RAG 检索增强生成的时候也同样提到了这一点。点击查看官方 assistant 使用教程。原创 2024-08-12 11:20:48 · 281 阅读 · 0 评论 -
人工智能|ChatGPT 的 API 使用
ChatGPT 不仅仅只是具备一个聊天机器人的功能。在其开放了 api 之后,就可以将 GPT 模型强大的能力轻松的通过 API 调用的方式使用。在掌握 ChatGPT api 的基础使用的同时,也可以为后续学习 LangChain 打下重要的基础。原创 2024-08-06 11:32:00 · 672 阅读 · 0 评论 -
基于人工智能的代码分析与 Bug 检测实战
以下代码的逻辑非常简单,给定一段列表 a,列表 a 中有四个元素,要从列表 a 中找到索引为 5 的元素,很容易就会发现,这段代码一定是跑不通的。以下代码原本是一段冒泡排序的代码,但是冒泡排序通常要求:从小到大排序,但是这段代码是从大到小排序。给到提示词:# bubble_sort()是一段实现了冒泡排序算法的函数请找出缺陷,先提示在问题是什么,然后再给出修改后的代码。而现在其中的一部分工作,都可以通过人工智能提升效率,辅助开发与测试发现更多的问题,降低成本和提高软件质量。原创 2024-08-05 17:05:01 · 882 阅读 · 0 评论 -
利用人工智能ChatGPT自动生成基于PO的数据驱动测试框架
PO(PageObject)设计模式将某个页面的所有元素对象定位和对元素对象的操作封装成一个 Page 类,并以页面为单位来写测试用例,实现页面对象和测试用例的分离。以上的代码只满足 PO 设计模式的需求,但是不满足数据驱动测试的需求,所以可以进一步优化提示词,要求用户名密码使用参数化以及数据驱动的方式传入。数据驱动测试(DDT)是一种方法,其中在数据源的帮助下重复执行相同顺序的测试步骤,以便在验证步骤进行时驱动那些步骤的输入值和/或期望值。原创 2024-07-31 10:47:48 · 378 阅读 · 0 评论 -
人工智能|利用人工智能自动找bug
通过自然语言处理和机器学习技术,能够通过分析程序员编写的代码、注释和上下文信息,自动生成代码,减轻程序员的工作量,节省开发者的时间和精力。在程序员编程的过程中,产生Bug是一件稀松平常的事情,以前在编码的过程中提前找出Bug,需要通过单元测试、CodeReview等各种方式。利用人工智能技术,可以开发出自动化的 bug 检测工具,从而提高软件质量和可靠性。除了Bug 检测,人工智能甚至还能根据需求说明,自动编写代码,这都是目前基于大语言模型的编程工具能做到的事情。此时Codex便应运而生。原创 2024-07-29 15:33:28 · 403 阅读 · 0 评论 -
人工智能|ReACT 推理提示
使用大语言模型最困难的事情是让它们做你希望它们做的事情。在一篇知名的 ReACT 研究论文《SYNERGIZING REASONING AND ACTING IN LANGUAGE MODELS》中,作者提出了以下的观点:在人类从事一项需要多个步骤的任务时,而步骤和步骤之间,或者说动作和动作之间,往往会有一个推理过程。我们以开车为例,在开车之前,我们会检查汽车的邮箱或者电池情况,以便汽车后续不会因为没有油而导致无法使用。当然,这个“检查的动作”是我们下意识的心理状态。有时候并不会直接讲出来。原创 2024-07-25 11:17:29 · 309 阅读 · 0 评论 -
人工智能|RAG 检索增强生成
当然在以上实现过程中,可能会有数据信息极为庞大,而且冗余,如果直接发给大模型,上下文也会极为庞大。LangChain 包括 ChatGPT 的官方 assistant 的 Retrieval 其实都利用了 RAG 的原理。而 RAG(Retrieval-Augmented Generation),通过将检索模型和生成模型(LLM)结合在一起,即可提高了生成内容的相关性和质量。其实大模型和数据库的交互,也是通过提示词完成的。那么大模型 LLM 如何解决这些问题,使其生成的内容质量更高,就成了一个难题。原创 2024-07-24 10:56:21 · 713 阅读 · 0 评论 -
人工智能|思维链
在刚开始学习数学的过程中,大部分人可以通过口算、心算的方式完成一些简单的运算。但是一旦题目变的复杂,比如初中之后的大部分数学题,都是很难直接通过口算、心算完成的。而是需要一个推理的过程,帮助我们更好的得到答案。以上两个题目,我们发现第一道题目我们可以立刻给出答案,但是大部分人面对第二道题目的时候,还需要做一个推导的过程。大模型在处理复杂问题的时候也是同理,如果在向大模型提问过程中,我们如果能够给大模型提供一个推理的过程,那么大模型的表现会更加优秀。现在让我们尝试使用思维链,给它添加一些推理的过程。原创 2024-07-23 16:35:23 · 182 阅读 · 0 评论 -
基于LangChain手工测试用例生成工具
在以上的流程中,一个测试工程师可以根据比较详细的需求文档以及研发的概要设计输出对应的测试点,以及测试用例。而如果和人工智能进行结合的话,人工智能代替的工作就是测试工程师目前的位置。在编写测试用例的过程中,测试工程师会通过需求文档,研发的概要设计等信息编写测试用例,测试用例的输出格式常常为思维导图或者excel等数据信息。接下来,则通过一个小实战练习完成整个流程,以下为某个产品的需求文档(需要右键另存为)。实战要完成具体的操作为,根据对应的需求文档,生成一个思维导图。原创 2024-07-19 15:00:16 · 305 阅读 · 0 评论 -
结合LangChain实现网页数据爬取
LangChain 非常强大的一点就是封装了非常多强大的工具可以直接使用。降低了使用者的学习成本。比如。在其官方文档-网页爬取中,也有非常好的示例。原创 2024-07-18 10:55:22 · 241 阅读 · 0 评论 -
基于LangChain手工测试用例生成工具
在编写测试用例的过程中,测试工程师会通过需求文档,研发的概要设计等信息编写测试用例,测试用例的输出格式常常为思维导图或者excel等数据信息。在以上的流程中,一个测试工程师可以根据比较详细的需求文档以及研发的概要设计输出对应的测试点,以及测试用例。而如果和人工智能进行结合的话,人工智能代替的工作就是测试工程师目前的位置。原创 2024-06-28 18:20:16 · 298 阅读 · 0 评论 -
人工智能ChatGPT的多种应用:如何更好地提问
在日常生活中,沟通本来就是很重要的一门课程,沟通的过程中表达的越清晰,给到的信息越多,那么沟通就越顺畅。其实在编程的过程中,也是同样的道理。正如人在回复信息的时候,也无法保证所有的回复都是正确的,ChatGPT 也无法保证每次给到的信息都是“靠谱的”或者是满足需求的。在学习 AIGC 的过程中,需要打破的往常的认知,不能再将 AI 作为简单的程序看待,反而要把它当作一个“人”来看待。和 ChatGPT 沟通也是同样的道理,如果想要 ChatGPT 给到的信息越准确,越清晰,和它的沟通就至关重要。原创 2024-06-11 16:49:39 · 735 阅读 · 0 评论 -
一键生成,效率翻倍,用AI赋能PPT制作
同样ChatGPT也可以做到自动生成PPT。在获得以上的内容之后,可以直接将内容粘贴到PPT文件中,进行排版以及内容的优化。如果不想自己排版,可以使用通过 Markdown 转成 PPT 的工具 RevealJs 直接生成符合格式的PPT内容。然后通过对应的工具进行预览如果预览 RevealJs 的格式的PPT,可以安装 vscode 及以下插件进行预览准备好对应环境后,即可预览完成通过ChatGPT生成的PPT内容。在这次实践中,我们使用了ChatGPT 提示词的以下技巧:获取更多软件测试技术资料/面原创 2024-05-30 09:21:44 · 297 阅读 · 0 评论 -
人工智能帮你一键生成完美架构图
架构图通过图形化的表达方式,用于呈现系统、软件的结构、组件、关系和交互方式。一个明确的架构图可以更好地辅助业务分析、技术架构分析的工作。架构图的设计是一个有难度的任务,设计者必须要对业务、相关技术栈都非常清晰才能设计出来符合需求的架构图。写清楚需求:明确产品的需求,让生成的架构图更贴近需求。系统地测试变化:如果中间步骤输出的信息不满足需求,可以通过提示词进行纠正与补充。原创 2024-05-20 11:19:08 · 418 阅读 · 0 评论 -
ChatGPT助您打造个性化简历:个人品牌升级攻略
在工作过程中,如何做可以拿到更多的面试机会呢?其实这个有一个计算公式,即为:面试的机会=投递的数量(渠道)* 命中的比例(简历)。是个人对于公司的第一印象。可以拿到更多面试机会。提高 HR 的期望,可以拿到更高薪酬。背景要清晰,不要缺少关键信息。专业技能要写清楚,重点要突出,从初级技能到高级递进罗列。添加相关证明(开源项目、证书)。同样,如果简历不知道如何优化的同学,也可以使用ChatGPT对简历完成相应的优化。写清楚需求:想要求职的岗位,岗位的侧重点,都可以写的更加清楚一些。原创 2024-05-13 11:13:46 · 862 阅读 · 0 评论 -
利用LangChain构建的智能数据库操作系统
在 Retrieval 或者 ReACT 的一些场景中,常常需要数据库与人工智能结合。而 LangChain 本身就封装了许多相关的内容,在其官方文档-SQL 能力中,也有非常好的示例。而其实现原理主要是通过 LLM 将自然语言转换为 SQL 语句,然后再通过 LLM 获取执行的操作,最终生成一个答案和结论。在未出现人工智能,如果想要完成数据查询与数据分析的工作,则需要相关人员有相应的数据库的功底,而在 LangChain 结合大语言模型的过程中,应对这些问题则相当轻松——写清晰的提示词即可。原创 2024-05-10 11:24:19 · 289 阅读 · 0 评论 -
测试答疑助手:从需求文档到设计文档、测试用例的完整测试过程
本文将基于 LangChain 实现一个 mini 的实战案例。这次实战主要完成的任务,就是设计一个测试答疑助手,这个测试答疑助手的主要功能为基于本地的文档和数据,回答给出的自然语言问题,比如一些数据的统计,查找、组合。原创 2024-05-09 11:57:37 · 408 阅读 · 0 评论