如何判断链表有环?解释+实现

  

                              

大四毕业前夕,计算机学院,

正在四处求职的小灰碰到了同系的学霸大黄......

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

小灰边说边回忆着上周去面试的情形......

 

 

 

 

 

 

 

 

 

 

 

 

 

 

有一个单向链表,链表当中有可能出现“环”,就像下图这样。如何用程序判断出这个链表是有环链表?

 

 

 

 

 

 

 

 

 

 

方法一:首先从头节点开始,依次遍历单链表的每一个节点。每遍历到一个新节点,就从头节点重新遍历新节点之前的所有节点,用新节点ID和此节点之前所有节点ID依次作比较。如果发现新节点之前的所有节点当中存在相同节点ID,则说明该节点被遍历过两次,链表有环;如果之前的所有节点当中不存在相同的节点,就继续遍历下一个新节点,继续重复刚才的操作。

 

例如这样的链表:A->B->C->D->B->C->D, 当遍历到节点D的时候,我们需要比较的是之前的节点A、B、C,不存在相同节点。这时候要遍历的下一个新节点是B,B之前的节点A、B、C、D中恰好也存在B,因此B出现了两次,判断出链表有环。

 

假设从链表头节点到入环点的距离是D,链表的环长是S。那么算法的时间复杂度是0+1+2+3+....+(D+S-1) = (D+S-1)*(D+S)/2 , 可以简单地理解成 O(N*N)。而此算法没有创建额外存储空间,空间复杂度可以简单地理解成为O(1)。

 

 

 

 

 

 

 

 

 

 

 

 

 

 

方法二:首先创建一个以节点ID为键的HashSet集合,用来存储曾经遍历过的节点。然后同样是从头节点开始,依次遍历单链表的每一个节点。每遍历到一个新节点,就用新节点和HashSet集合当中存储的节点作比较,如果发现HashSet当中存在相同节点ID,则说明链表有环,如果HashSet当中不存在相同的节点ID,就把这个新节点ID存入HashSet,之后进入下一节点,继续重复刚才的操作。

 

这个方法在流程上和方法一类似,本质的区别是使用了HashSet作为额外的缓存。

 

假设从链表头节点到入环点的距离是D,链表的环长是S。而每一次HashSet查找元素的时间复杂度是O(1), 所以总体的时间复杂度是1*(D+S)=D+S,可以简单理解为O(N)。而算法的空间复杂度还是D+S-1,可以简单地理解成O(N)。

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

等通知就是没通知,这是职场上公认的语言。

以上就是小灰悲剧的回忆......

 

 

 

 

 

 

 

 

 

 

 

 

 

方法三:首先创建两个指针1和2(在java里就是两个对象引用),同时指向这个链表的头节点。然后开始一个大循环,在循环体中,让指针1每次向下移动一个节点,让指针2每次向下移动两个节点,然后比较两个指针指向的节点是否相同。如果相同,则判断出链表有环,如果不同,则继续下一次循环。

 

例如链表A->B->C->D->B->C->D,两个指针最初都指向节点A,进入第一轮循环,指针1移动到了节点B,指针2移动到了C。第二轮循环,指针1移动到了节点C,指针2移动到了节点B。第三轮循环,指针1移动到了节点D,指针2移动到了节点D,此时两指针指向同一节点,判断出链表有环。

 

此方法也可以用一个更生动的例子来形容:在一个环形跑道上,两个运动员在同一地点起跑,一个运动员速度快,一个运动员速度慢。当两人跑了一段时间,速度快的运动员必然会从速度慢的运动员身后再次追上并超过,原因很简单,因为跑道是环形的。

 

 

 

 

假设从链表头节点到入环点的距离是D,链表的环长是S。那么循环会进行S次(为什么是S次,有心的同学可以自己揣摩下),可以简单理解为O(N)。除了两个指针以外,没有使用任何额外存储空间,所以空间复杂度是O(1)。

 

 

 

 

 

问题一:判断两个单向链表是否相交,如果相交,求出交点。

 

 

 

 

问题二:在一个有环链表中,如何找出链表的入环点?

 

 

 

 

 

 

 

 

—————END—————

转载:https://zhuanlan.zhihu.com/p/31401474?utm_source=wechat_session&utm_medium=social&from=singlemessage

 

实现:

1.限制与要求

  • 不允许修改链表结构。
  • 时间复杂度O(n),空间复杂度O(1)。

2.思考

2.1判断是否有环

如果链表有环,那么在遍历链表时则会陷入死循环,利用这个特征,我们可以设计这样的算法。

  • 使用一个slow指针,一个fast指针。
  • slow指针一次往后遍历以1个节点,fast指针一次往后遍历2个节点,一直做这样的操作。

  • 如果fast指针在遍历过程中,遍历到了NULL节点说明链表没有环。

  • 否则当slow指针和falst指针相同,则说明环有节点。

2.2环的入口节点

我们假定链表头到环入口的距离是len,环入口到slow和fast交汇点的距离为x,环的长度为R。slow和fast第一次交汇时,设slow走的长度为:d = len + x,而fast走的长度为:2d = len + nR + x,(n >= 1),从而我们可以得知:2len + 2x = len + nR + x,即len = nR - x,(n >= 1),于是我们可以得到这样的算法。

  • 使用一个cur指针指向链表头节点,一个inter指针指向第一次的交汇点。

  • cur指针和inter指针一起往后遍历。

  • cur指针和inter指针相等时,cur和inter指针指向的就是环的入口节点。

 

inter指针在遍历过程中可能多次(n >= 1)经过环入口节点,但当cur指针第一次达到入口节点时,inter指针此时必然也指向入口节点。

3.代码实现

/**
 * Definition for singly-linked list.
 * struct ListNode {
 *     int val;
 *     ListNode *next;
 *     ListNode(int x) : val(x), next(NULL) {}
 * };
 */
class Solution {
public:
    ListNode * detectCycle(ListNode * head) {
        if (NULL == head) return NULL;
        ListNode * fast = head;
        ListNode * slow = head;
        
        while (1)
        {
            fast = fast->next ? fast->next : NULL;
            if (NULL == fast) break;
            
            fast = fast->next ? fast->next : NULL;
            if (NULL == fast) break;
            
            slow = slow->next;
    
            if (slow == fast) break;
        }
        
        if (NULL == fast) return NULL;
        
        ListNode * cur = head;
        ListNode * inter = slow;
        
        while (cur != inter)
        {
            cur = cur->next;
            inter = inter->next;
        }
        
        return cur;
    }
};

LeetCode 单链表是否有环及入口


链接:https://www.jianshu.com/p/ef71e04241e4

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值