多分类的loss函数,accuracy理解——手写代码

本文探讨了多分类任务中categorical cross entropy损失函数和Accuracy的关系,指出由于Accuracy仅关注最大概率,可能导致高Accuracy伴随高loss。建议在训练时关注loss,但在某些场景下可考虑对最大概率设定阈值来调整。同时,提供了手写Python代码实现loss和Accuracy的计算,并通过实验验证了正确性。
摘要由CSDN通过智能技术生成

0. 写作目的

好记性不如烂笔头。

总结: 博主认为,正是由于Accuracy计算时,采用的是相对最大概率,所以存在计算的loss与accuracy不成正比关系,即当accuracy很高时,有可能存在loss很高,这是由于,我们的目的是:使得最大下标的概率很大,接近于1,但实际是相对最大,导致accuracy很高,loss也很高,如对于三分类,我们期望的预测结果是[1, 0, 0]或者[0.95, 0.02, 0.03],但可能实际得到的是[0.45, 0.25, 0.3],此时accuracy的计算结果不变,但是loss值却变动很大。

改进:因此一般训练时,看loss为主。但在发表的论文中存在以accuracy为准则(如VGG论文)。如果以accuracy为主,可以添加约束条件,例如,对相对最大值进行判断。即如果相对最大值大于0.8,认为正确,否则不正确。

1. category cross entropy

以下是一个基于TensorFlowKeras手写数字识别实验代码: ```python import tensorflow as tf from tensorflow import keras import numpy as np import matplotlib.pyplot as plt # 加载MNIST数据集 mnist = keras.datasets.mnist (train_images, train_labels), (test_images, test_labels) = mnist.load_data() # 对数据进行预处理 train_images = train_images / 255.0 test_images = test_images / 255.0 # 构建模型 model = keras.Sequential([ keras.layers.Flatten(input_shape=(28, 28)), keras.layers.Dense(128, activation='relu'), keras.layers.Dense(10, activation='softmax') ]) # 编译模型 model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy']) # 训练模型 model.fit(train_images, train_labels, epochs=10) # 评估模型 test_loss, test_acc = model.evaluate(test_images, test_labels) print('Test accuracy:', test_acc) # 预测结果 predictions = model.predict(test_images) ``` 上述代码中,我们首先加载MNIST数据集,然后对训练集和测试集的图片数据进行归一化处理。接着,我们构建了一个包含两个Dense层的神经网络模型,其中第一个Dense层有128个神经元,使用ReLU激活函数;第二个Dense层有10个神经元,使用Softmax激活函数。我们使用Adam优化器和稀疏分类交叉熵作为损失函数来编译模型。然后,我们使用训练集数据对模型进行训练,训练10个周期。最后,我们评估模型在测试集上的表现,并对测试集的图片进行预测。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值