“符号三角” 问题的回溯法求解方法

“符号三角” 问题的回溯法求解方法

符号三角问题:下面都是“-”。 下图是由14个“+”和14个“-”组成的符号三角形。2个同号下面都是“+”,2个异号下面都是“-”。

在一般情况下,符号三角形的第一行有n个符号。符号三角形问题要求对于给定的n,计算有多少个不同的符号三角形,使其所含的“+”和“-”的个数相同。
实现如下功能:
1.分别输出n的值为1----20时,对应的符号三角形个数,如没有满足条件的符号三角形,则输出0
代码:
public class TRAN {
static int n;//第一行的符号个数
static int half;//n*(n+1)/4
static int count;//当前“+”或者“-”的个数
static int[][] p;//符号三角形矩阵
static long sum;//已找到的符号三角形的个数
public static float Compute(int nn) {

	n = nn;
	count = 0;
	sum = 0;
	half = (n*(n+1))>>1;
	if((half>>1)<<1 != half) {
		return 0;
	}
	half = half>>1;
	p = new int[n+1][n+1];
	backtrack01(1);
	return sum;
}
public static void backtrack01(int t) {
	if(count>half || (t*(t-1)/2-count > half)) {//对题解树的剪枝
		return;
	}
	if(t>n) {
		sum++;//符号三角形的总数目+1
	}
	else {
		//每个位置都有两种情况0,1
		for(int i = 0;i<2;i++) {
			p[1][t] = i;
			count += i;//对"-"个数进行技术,为了进行剪枝操作
			//接下来绘制其余的n-1行
			for(int j = 2;j<=t;j++) {
				//通过异或的方式求其余行数的放置方式
				p[j][t-j+1] = p[j-1][t-j+1]^p[j-1][t-j+2];
				count += p[j][t-j+1];	
			}
			backtrack01(t+1);
			//恢复现场
			for(int j = 2;j<=t;j++) {
				count -= p[j][t-j+1];
			}
			count -= i;
		}
	}
}
public static void main(String[] args) {
	// TODO Auto-generated method stub
	int n;
	for(n=1;n<=20;n++) {
	float SUM = Compute(n);	
	System.out.println("n的值为"+n+"时对应的符号三角形总数: " + SUM);
	}
}

}

运行截图:
在这里插入图片描述
2.输入一个整数n,输出对应的符号三角形的个数,并依次显示出所有的符号三角形。
代码:

public class TRAN {
	static int n;//第一行的符号个数
	static int half;//n*(n+1)/4
	static int count;//当前“+”或者“-”的个数
	static int[][] p;//符号三角形矩阵
	static long sum;//已找到的符号三角形的个数
	public static float Compute(int nn) {
		n = nn;
		count = 0;
		sum = 0;
		half = (n*(n+1))>>1;
		if((half>>1)<<1 != half) {
			return 0;
		}
		half = half>>1;
		p = new int[n+1][n+1];
		backtrack(1);
		return sum;
	}
	public static void backtrack(int t) {
		if((count>half)||((t*(t-1)/2-count > half))) //对题解树的剪枝
			return;
		if(t>n) {
			sum++;
			//打印符号三角形
			for(int i =1;i<=n;i++) {
				for(int k = 1;k<i;k++) {
					System.out.print(" ");
				}
				for(int j =1;j<=n;j++) {
					if(p[i][j] == 0 && j<=n-i+1) {
						System.out.print("+" + " ");
					}
					else if(p[i][j] == 1 && j<=n-i+1) {
						System.out.print("-" + " ");
					}
					else {
						System.out.print("  ");
					}
				}
				System.out.println();
			}
			System.out.println();
		}
		else {
			//每个位置都有两种情况0,1
			for(int i =0;i<2;i++) {
				p[1][t] = i;
				count += i;//计算“-”的个数
				//接下来绘制其余的n-1行
				for(int j = 2;j<=t;j++) {
					//通过异或的方式求其余行数的放置方式
					p[j][t-j+1] = p[j-1][t-j+1]^p[j-1][t-j+2];
					count += p[j][t-j+1];	
				}
				backtrack(t+1);
				//恢复现场
				for(int j =2;j<=t;j++) {
					count -= p[j][t-j+1];
				}
				count -= i;	
			}
		}
	}
	public static void main(String[] args) {
		// TODO Auto-generated method stub
		float SUM = Compute(4);	
		System.out.println("n的值为"+n+"时对应的符号三角形总数: " + SUM);	
	}
}

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值