计算机程序的构造和解释 练习题2.94

在number、ploy、terms的安装包里面都加上gcd的方法就可以了,不单独列这几个过程了,直接附上完整过程。
这里加上验证多项式最大公因数结果的人工解法。
第 一 个 多 项 式 的 因 式 分 解 过 程 x 4 − x 3 − 2 x 2 + 2 x = x ( x 3 − 1 ) − 2 x ( x − 1 ) = x ( x − 1 ) ( x 2 + x + 1 ) − 2 x ( x − 1 ) = x ( x − 1 ) ( x 2 + x − 1 ) 第 二 个 多 项 式 的 因 式 分 解 过 程 x 3 − x = x ( x 2 − 1 ) = x ( x − 1 ) ( x + 1 ) 所 以 两 个 多 项 式 的 最 大 公 因 数 是 x ( x − 1 ) 也 就 是 x 2 − x 第一个多项式的因式分解过程\\ x^4-x^3-2x^2+2x\\ =x(x^3-1)-2x(x-1)\\ =x(x-1)(x^2+x+1)-2x(x-1)\\ =x(x-1)(x^2+x-1)\\ 第二个多项式的因式分解过程\\ x^3-x\\ =x(x^2-1)\\ =x(x-1)(x+1)\\ 所以两个多项式的最大公因数是x(x-1)也就是x^2-x x4x32x2+2x=x(x31)2x(x1)=x(x1)(x2+x+1)2x(x1)=x(x1)(x2+x1)x3x=x(x21)=x(x1)(x+1)x(x1)x2x

#lang racket
;put get实现
(define *op-table* (make-hash))

(define (put op type proc)
  (hash-set! *op-table* (list op type) proc))

(define (get op type)
  (hash-ref *op-table* (list op type) #f))

(define *type-coercion* (make-hash))

(define (put-coercion type1 type2 proc)
  (hash-set! *type-coercion* (list type1 type2) proc))

(define (get-coercion type1 type2)
  (hash-ref *type-coercion* (list type1 type2) #f))

(define (attach-tag type-tag contents)
  (cond ((eq? type-tag 'scheme-number) contents)
        (else (cons type-tag contents))))

(define (type-tag datum)
  (cond ((number? datum) 'scheme-number)
        ((pair? datum) (car datum))
        (else (error "Bad tagged datum -- TYPE-TAG" datum))))

(define (contents datum)
   (cond ((number? datum) datum)
         ((pair? datum) (cdr datum))
         (else (error "Bad tagged datum -- CONTENTS" datum))))

(define (apply-generic op . args)
  (let ((type-tags (map type-tag args)))
    (let ((proc (get op type-tags)))
      (if proc
          (apply proc (map contents args))
          (if (= (length args) 2)
              (let ((type1 (car type-tags))
                    (type2 (cadr type-tags))
                    (a1 (car args))
                    (a2 (cadr args)))
                (let ((t1->t2 (get-coercion type1 type2))
                      (t2->t1 (get-coercion type2 type1)))
                  (cond (t1->t2
                         (apply-generic op (t1->t2 a1 (variable a2)) a2))
                        (t2->t1
                         (apply-generic op a1 (t2->t1 a2 (variable a1))))
                        (else
                         (error "No method for these types"
                                (list op type-tags))))))
              (error "No method for these types"
                     (list op type-tags)))))))

(define (add x y) (apply-generic 'add x y))
(define (sub x y) (apply-generic 'sub x y))
(define (mul x y) (apply-generic 'mul x y))
(define (div x y) (apply-generic 'div x y))
(define (=zero? x) (apply-generic '=zero? x))
(define (remainder-terms a b)
   (apply-generic 'remainder-terms a b))
(define (coeff-all-zero? x) (apply-generic 'coeff-all-zero? x))


(define (install-scheme-number-package)
  (define (tag x)
    (attach-tag 'scheme-number x))
  (define (gcd a b)
    (if (= b 0)
        a
        (gcd b (remainder a b))))
  (put 'add '(scheme-number scheme-number)
       (lambda (x y) (tag (+ x y))))
  (put 'sub '(scheme-number scheme-number)
       (lambda (x y) (tag (- x y))))
  (put 'mul '(scheme-number scheme-number)
       (lambda (x y) (tag (* x y))))
  (put 'div '(scheme-number scheme-number)
       (lambda (x y) (tag (/ x y))))
  (put '=zero? '(scheme-number)
       (lambda (x) (= x 0)))
  (put 'gcd '(scheme-number scheme-number)
       (lambda (x y) (gcd x y)))
  (put 'make 'scheme-number
       (lambda (x) (tag x)))
  'done)
(define (make-scheme-number n)
  ((get 'make 'scheme-number) n))

(define (install-rational-package)
  (define (numer x) (car x))
  (define (denom x) (cdr x))
  (define (make-rat n d)
    ;;(let ((g (gcd n d)))
      ;;(cons (/ n g) (/ d g)))
    (cons n d)
    )
  (define (add-rat x y)
    (make-rat (add (mul (numer x) (denom y))
                 (mul (numer y) (denom x)))
              (mul (denom x) (denom y))))
  (define (sub-rat x y)
    (make-rat (sub (mul (numer x) (denom y))
                 (mul (numer y) (denom x)))
              (mul (denom x) (denom y))))
  (define (mul-rat x y)
    (make-rat (mul (numer x) (numer y))
              (mul (denom x) (denom y))))
  (define (div-rat x y)
    (make-rat (mul (numer x) (denom y))
              (mul (denom x) (numer y))))
  (define (tag x) (attach-tag ' rational x))
  (put 'add '(rational rational)
       (lambda (x y) (tag (add-rat x y))))
  (put 'sub '(rational rational)
       (lambda (x y) (tag (sub-rat x y))))
  (put 'mul '(rational rational)
       (lambda (x y) (tag (mul-rat x y))))
  (put 'div '(rational rational)
       (lambda (x y) (tag (div-rat x y))))
  (put 'make 'rational
       (lambda (n d) (tag (make-rat n d))))
  'done)
(define (make-rational n d)
  ((get 'make 'rational) n d))

(define (install-polynomial-package)
  (define (make-poly variable term-list)
    (cons variable term-list))
  (define (variable p) (car p))
  (define (term-list p) (cdr p))
  (define (add-poly p1 p2)
    (if (same-variable? (variable p1) (variable p2))
        (make-poly (variable p1)
                   (add (term-list p1)
                        (term-list p2)))
        (add-poly p1 (contents (poly->poly (tag p2) (variable p1))))))
  (define (sub-poly p1 p2)
    (if (same-variable? (variable p1) (variable p2))
        (make-poly (variable p1)
                   (sub (term-list p1)
                        (term-list p2)))
        (sub-poly p1 (contents(poly->poly (tag p2) (variable p1))))))
  (define (mul-poly p1 p2)
    (if (same-variable? (variable p1) (variable p2))
        (make-poly (variable p1)
                   (mul (term-list p1)
                        (term-list p2)))
        (mul-poly p1 (contents(poly->poly (tag p2) (variable p1))))))
  (define (div-poly p1 p2)
    (if (same-variable? (variable p1) (variable p2))
        (make-poly (variable p1)
                   (div (term-list p1)
                        (term-list p2)))
        (div-poly p1 (contents(poly->poly (tag p2) (variable p1))))))
  (define (=zero-poly? poly)
    (coeff-all-zero? (term-list poly)))
  (define (gcd-poly p1 p2)
     (if (same-variable? (variable p1) (variable p2))
        (make-poly (variable p1)
                   (gcd (term-list p1)
                        (term-list p2)))
        (gcd-poly p1 (contents(poly->poly (tag p2) (variable p1))))))
  
  (define (tag p) (attach-tag 'polynomial p))
  (put 'gcd '(polynomial polynomial)
       (lambda (p1 p2) (tag (gcd-poly p1 p2))))
  (put 'add '(polynomial polynomial)
       (lambda (p1 p2) (tag (add-poly p1 p2))))
  (put 'mul '(polynomial polynomial)
       (lambda (p1 p2) (tag (mul-poly p1 p2))))
  (put 'sub '(polynomial polynomial)
       (lambda (p1 p2) (tag (sub-poly p1 p2))))
  (put 'div '(polynomial polynomial)
       (lambda (p1 p2) (tag (div-poly p1 p2))))
  (put 'variable '(polynomial)
       (lambda (p) (variable p)))
  (put 'term-list '(polynomial)
       (lambda (p) (term-list p)))
  (put '=zero? '(polynomial) =zero-poly?)
  (put 'make 'polynomial
       (lambda (var terms) (tag (make-poly var terms))))
  'done)

(define (poly->poly p newvar)
   ;;把这一项的指数部分转化成旧变量的表达式,比如3*x^2转化为系数为1*x^2*y^0的表达式,用来作为新变量的系数。
  (define (term-order->poly order oldvar)
    (make-polynomial newvar 
                     (make-sparse-terms 
                      (list (make-term 0
                                       (make-polynomial oldvar 
                                                        (make-sparse-terms 
                                                         (list (make-term order 1)))))))))
  (define (term-coeff->poly coeff)
    (cond ((number? coeff) (number->poly coeff newvar))
           ((eq? (variable coeff) newvar) coeff)
           (else (make-polynomial newvar (make-sparse-terms (list (make-term 0 coeff)))))))
        
  (define (term->poly term oldvar)
    (mul (term-order->poly (order term) oldvar)
         (term-coeff->poly (coeff term))))
    
  (cond ((eq? (variable p) newvar) p)
        ((empty-terms? (term-list p)) (make-polynomial newvar (make-sparse-terms '())))
        ((add (term->poly (first-terms (term-list p)) (variable p)) 
              (poly->poly (make-polynomial (variable p) (make-sparse-terms (rest-terms (term-list p)))) newvar)))))
   
(define (number->poly n var)
  (make-polynomial var (make-sparse-terms (list (make-term 0 n)))))
(put-coercion 'scheme-number 'polynomial number->poly)

(define (install-sparse-polynomial-package)
  (define (add-terms L1 L2)
    (cond ((empty-termlist? L1) L2)
          ((empty-termlist? L2) L1)
          (else
           (let ((t1 (first-term L1)) (t2 (first-term L2)))
             (cond ((> (order t1) (order t2))
                    (adjoin-term
                     t1 (add-terms (rest-terms L1) L2)))
                   ((< (order t1) (order t2))
                    (adjoin-term
                     t2 (add-terms L1 (rest-terms L2))))
                   (else
                    (adjoin-term
                     (make-term (order t1) 
                                (add (coeff t1) (coeff t2)))
                     (add-terms (rest-terms L1)
                                (rest-terms L2)))))))))
  (define (sub-terms L1 L2)
    (cond ((empty-termlist? L1) L2)
          ((empty-termlist? L2) L1)
          (else
           (let ((t1 (first-term L1)) (t2 (first-term L2)))
             (cond ((> (order t1) (order t2))
                    (adjoin-term
                     t1 (sub-terms (rest-terms L1) L2)))
                   ((< (order t1) (order t2))
                    (adjoin-term
                     (make-term (order t2) (- 0 (coeff t2))) (sub-terms L1 (rest-terms L2))))
                   (else
                    (adjoin-term
                     (make-term (order t1) 
                                (sub (coeff t1) (coeff t2)))
                     (sub-terms (rest-terms L1)
                                (rest-terms L2)))))))))
  (define (mul-terms L1 L2)
    (if (empty-termlist? L1)
        (the-empty-termlist)
        (add-terms (mul-term-by-all-terms (first-term L1) L2)
                   (mul-terms (rest-terms L1) L2))))
  (define (mul-term-by-all-terms t1 L)
    (if (empty-termlist? L)
        (the-empty-termlist)
        (let ((t2 (first-term L)))
          (adjoin-term
           (make-term (+ (order t1) (order t2))
                      (mul (coeff t1) (coeff t2)))
           (mul-term-by-all-terms t1 (rest-terms L))))))
  (define (div-terms L1 L2)
    (if (empty-termlist? L1)
        (list (the-empty-termlist) (the-empty-termlist))
        (let ((t1 (first-term L1))
              (t2 (first-term L2)))
          (if (> (order t2) (order t1))
              (list (the-empty-termlist) L1)
              (let ((new-c (div (coeff t1) (coeff t2)))
                    (new-o (- (order t1) (order t2))))
                (if (=zero? new-c)
                     (list (the-empty-termlist) L1)
                     (let ((rest-of-result (div-terms (sub-terms L1 (mul-term-by-all-terms (make-term new-o new-c) L2)) L2)))
                       (list (adjoin-term (make-term new-o new-c) (car rest-of-result)) (cadr rest-of-result))
                       )))))))
  (define (remainder-terms a b)
    (cadr (div-terms a b)))
  (define (gcd-terms a b)
    (if (empty-termlist? b)
        a
        (gcd-terms b (remainder-terms a b))))
  (define (coeff-all-zero? term-list)
      (if (empty-termlist? term-list)
          #t
          (if (=zero? (coeff (first-term term-list)))
              (coeff-all-zero? (rest-terms term-list))
              #f)))
  (define (the-empty-termlist) '())
  (define (first-term term-list) (car term-list))
  (define (rest-terms term-list) (cdr term-list))
  (define (empty-termlist? term-list) (null? term-list))
  (define (make-term order coeff) (list order coeff))
  (define (order term) (car term))
  (define (coeff term) (cadr term))
  (define (tag p) (attach-tag 'sparse p))
  (put 'coeff-all-zero? '(sparse)
       (lambda (p1) (coeff-all-zero? p1)))
  (put 'remainder-terms '(sparse sparse)
       (lambda (p1 p2) (tag (remainder-terms p1 p2))))
  (put 'gcd '(sparse sparse)
       (lambda (p1 p2) (tag (gcd-terms p1 p2))))
  (put 'add '(sparse sparse)
       (lambda (p1 p2) (tag (add-terms p1 p2))))
  (put 'mul '(sparse sparse)
       (lambda (p1 p2) (tag (mul-terms p1 p2))))
  (put 'sub '(sparse sparse)
       (lambda (p1 p2) (tag (sub-terms p1 p2))))
  (put 'div '(sparse sparse)
       (lambda (p1 p2) (tag (div-terms p1 p2))))
  (put 'order 'term
       (lambda (p) (order p)))
  (put 'coeff 'term
       (lambda (p) (coeff p)))
  (put 'make 'term
       (lambda (p t) (make-term p t)))
  (put 'rest-terms '(sparse)
       (lambda (p) (rest-terms p)))
   (put 'empty-terms '(sparse)
       (lambda (p) (empty-termlist? p)))
  (put 'first-terms '(sparse)
       (lambda (p) (first-term p)))
  (put 'make 'sparse
       (lambda (terms) (tag terms)))
  'done)
(define (adjoin-term term term-list)
  (if (=zero? (coeff term))
      term-list
      (cons term term-list)))
(define (variable x) 
  (apply-generic 'variable x))
(define (term-list x) 
  (apply-generic 'term-list x))
(define (order term)
  ((get 'order 'term) term))
(define (coeff term)
  ((get 'coeff 'term) term))
(define (make-term order coeff)
  ((get 'make 'term) order coeff))
(define (rest-terms term-list)
  (apply-generic 'rest-terms term-list))
(define (first-terms term-list)
  (apply-generic 'first-terms term-list))
(define (make-polynomial var terms)
  ((get 'make 'polynomial) var terms))
(define (make-sparse-terms terms)
  ((get 'make 'sparse) terms))
(define (empty-termlist? term-list) (null? term-list))

(define (empty-terms? terms)
  (apply-generic 'empty-terms terms))

(define (same-variable? v1 v2)
  (define (variable? x) (symbol? x))
  (and (variable? v1) (variable? v2) (eq? v1 v2)))
(define (gcd p1 p2)
  (apply-generic 'gcd p1 p2))
(define (greatest-common-div-divisor p1 p2)
  (gcd p1 p2))

(install-scheme-number-package)
(install-rational-package)
(install-polynomial-package)
(install-sparse-polynomial-package)
(define p1 (make-polynomial 'x (make-sparse-terms '((4 1) (3 -1) (2 -2) (1 2)))))
(define p2 (make-polynomial 'x (make-sparse-terms '((3 1) (1 -1)))))
(greatest-common-div-divisor p1 p2)

运行结果为-x^2+x,和我们的计算结果多了个负号,也算正确吧。

'done
'done
'done
'done
'(polynomial x sparse (2 -1) (1 1))
weixin063传染病防控宣传微信小程序系统的设计与实现+springboot后端毕业源码案例设计 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值