密码学中的离散对数问题与椭圆曲线密码学
1. 离散对数问题算法进展
离散对数问题(DLP)在密码学中有着重要地位,相关算法不断发展。索引微积分方法(ICM)的复杂度为 $L_p[1/2, c]$(其中 $c$ 是一个小常数,如 $\sqrt{2}$)。它还启发了许多研究人员提出新算法或应用现有算法来解决 DLP。例如,为解决整数分解问题(IFP)而发明的数域筛选算法(NFS)也可用于解决 DLP,其运行时间复杂度为 $L_p[1/3, c]$,因此是在 $Z_p^*$ 中常用的算法之一。
若将算法应用于扩展域 $F_q$(其中 $q = p^n$,$p$ 是素数),存在更高效的 ICM 版本,大多数的时间复杂度为 $L_q[1/3, c]$(与 NFS 算法相当)。2013 年,Antoine Joux 显著改进了小特征扩展域中解决 DLP 的技术水平,其算法的时间复杂度接近 $L_q[1/4, c]$,虽还不是多项式时间,但已很接近,有时被称为准多项式时间,在某些扩展域中,这是目前解决 DLP 最有效的算法。
2. 离散对数计算的现状分析
- 在 $Z_p^*$ 中的情况 :在 $Z_p^ $ 中计算离散对数的最新技术与分解整数的最新技术直接可比。只有少数例外情况,计算离散对数比分解整数更高效。这表明在 $Z_p^ $ 中工作时,$p$ 的比特长度应与依赖整数分解假设(IFA)的密码系统中使用的模数 $n$ 的比特长度相当。1024 比特提供的安全级别相当于 80 比特的密钥,而 2048 比特提供的安全级别相当于 112 比特,显然 2048 比特的安全级别在当今更合适。同时,在 $