R语言多元线性回归分析

这篇博客介绍了如何在R语言中进行多元线性回归分析,特别是在数据集增加新列后,针对不良贷款、贷款余额、累计应收货款、贷款项目个数和固定资产投资额等变量。通过逐步回归方法优化模型,分析结果显示去除x3后,P值得到优化,虽然R2略有减少,但调整后的AdjustedR-squared值增大,说明模型的解释能力增强。
摘要由CSDN通过智能技术生成
还是之前的那个例子,只不过数据集增加了几列

某商业银行2002年主要业务数据

分行编号 不良贷款(亿元) 各项贷款余额(亿元) 本年累计应收货款(亿元) 贷款项目个数(个) 本年固定资产投资额(亿元)
1 0.9 67.3 6.8 5 51.9
2 1.1 111.3 19.8 16 90.9
3 4.8 173.0 7.7 17 73.7
4 3.2 80.8 7.2 10 14.5
5 7.8 199.7 16.5 19 63.2
6 2.7 16.2 2.2 1 2.2
7 1.6 107.4 10.7 17 20.2
8 12.5 185.4 27.1 18 43.8
9 1.0 96.1 1.7 10 55.9
10 2.6 72.8 9.1 14 64.3
11 0.3 64.2 2.1 11 42.7
12 4.0 132.2 11.2 23 76.7
13 0.8 58.6 6.0 14 22.8
14 3.5 174.6 12.7 26 117.1
15 10.2 263.5 15.6 34 146.7
16 3.0 79.3 8.9 15 29.9
17 0.2 14.8 0.6 2 42.1
18 0.4 73.5 5.9 11 25.3
19 1.0 24.7 5.0 4 13.4
20 6.8 139.4 7.2 28 64.3
21 11.6 368.2 16.8 32 163.9
22 1.6 95.7 3.8 10 44.5
23 1.2 109.6 10.3 14 67.9
24 7.2 196.2 15.8 16 39.7
25 3.2 102.2 12.0 10 97.1
不良贷款( y ),贷款余额( x1 ),累计应收货款( x2 ),贷款项目个数( x3 ),固定资产投资额( x4
#添加到数据框中
> y<- c(0.9,1.1,4.8,3.2,7.8,2.7,1.6,12.5,1.0,2.6,0.3,4.0,0.8,3.5,10.2,3.0,0.2,0.4,1.0,6.8,11.6,1.6,1.2,7.2,3.2)
> x_1<-c(67.3,111.3,173.0,80.8,199.7,16.2,107.4,185.4,96.1,
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值