POJ 3237 Tree(树链剖分+线段树)

题目:Tree

题意:给定一棵树,树边有权值,然后三种操作:

CHANGE i v:将编号为i的边的权值修改为v;

NEGATE a b:将树上a到b的路径经过的边的权值全部取反,即改变它们的正负号;

QUERY a b:询问树上a到b的路径经过的边的权值的最大值;

单条链的问题用线段树很好解决,结点记录当前区间的最大值和最小值,修改是单点修改,没什么问题。对于区间取反的,打个懒惰标记,然后最大值变成原先最小值的相反数,最小值变成原先最大值的相反数。

所以这个题目按照这个思想进行树链剖分后,每条链按照上述方案维护线段树即可。

之前在HDU4718这题里面,用了个map来映射出每条链对应的节点的权值,详情见我上一篇文章。

不过这题用了map却超时了,毕竟map套map的查询复杂度是(log N)^2。

然后想到可以用vector来搞定,因为不管是之前的加入map也好,现在的加入vector也好,添加顺序是按照链上从左到右添加的,所以vector存储的顺序跟链上结点顺序是对应的。

所以查询变成O(1),改成vector就AC了。

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>
#include<map>
using namespace std;
const int N = 10010;
inline void in(int &x){
    bool mk = 0;
    x = 0;
    char c=getchar();
    while(c<48 || c>57){
        if(c=='-')  mk=1;
        c=getchar();
    }
    while(c>=48 && c<=57){
        x = x*10+c-48;
        c = getchar();
    }
    if(mk)  x = -x;
}
#define pb push_back
#define cur tr[o]
#define lson tr[o].lch
#define rson tr[o].rch
#define lchd tr[tr[o].lch]
#define rchd tr[tr[o].rch]
struct Edge{
    int to, id;
    Edge(){}
    Edge(int to, int id):to(to),id(id){}
};
vector<Edge> V[N];
struct TreeNode{
    int l, r, Max, Min;
    bool f;
    int lch, rch;
}tr[N*10];
vector<int> MP[N];
int n, path_cnt, node_cnt;
int father[N];
int belong[N];
int size[N];
int rank[N];
int path_size[N];
int path_top[N];
int path_dep[N];
int bottom[N];//从根节点出发形成的树,每条边下面的结点的编号
int weight[N];//边的权值
int val[N];//结点到父结点的边的权值
int tree[N];
/*线段树部分*/
void maintain(int o){
    cur.Max = max(lchd.Max, rchd.Max);
    cur.Min = min(lchd.Min, rchd.Min);
}
void build(int id, int o, int ll, int rr){
    cur.l=ll; cur.r=rr;
    cur.f = 0;
    if(ll<rr){
        int m = (ll+rr)>>1;
        lson = ++node_cnt;
        build(id, lson, ll, m);
        rson = ++node_cnt;
        build(id, rson, m+1, rr);
        maintain(o);
    }
    else{
        cur.Max = cur.Min = MP[id][ll-1];
    }
}
void update(int o, int ll, int rr);
void pushdown(int o){
    if(cur.f){
        int m = (cur.l + cur.r)>>1;
        update(lson, cur.l, m);
        update(rson, m+1, cur.r);
        cur.f = 0;
    }
}
void update(int o, int ll, int rr){
    if(cur.l==ll && cur.r==rr){
        int tmp = cur.Min;
        cur.Min = -cur.Max;
        cur.Max = -tmp;
        cur.f ^= 1;
        return;
    }
    int m = (cur.l+cur.r)>>1;
    pushdown(o);
    if(rr<=m)   update(lson, ll, rr);
    else if(ll>m)   update(rson, ll, rr);
    else{
        update(lson, ll, m);
        update(rson, m+1, rr);
    }
    maintain(o);
}
void change(int o, int p, int v){
    if(cur.l==p && cur.r==p){
        cur.Max = cur.Min = v;
        return;
    }
    int m = (cur.l+cur.r)>>1;
    pushdown(o);
    if(p<=m)    change(lson, p, v);
    else    change(rson, p, v);
    maintain(o);
}
int query(int o, int ll, int rr){
    if(cur.l==ll && cur.r==rr)  return cur.Max;
    pushdown(o);
    int ans;
    int m = (cur.l+cur.r)>>1;
    if(rr<=m)   ans = query(lson, ll, rr);
    else if(ll>m)   ans = query(rson, ll, rr);
    else    ans = max(query(lson, ll, m), query(rson, m+1, rr));
    maintain(o);
    return ans;
}
/*以上是线段树的代码*/
void dfs(int x, int dep){
    int key=-1;
    int M = 0;
    size[x]=1;
    for(int i=0; i<V[x].size(); i++){
        Edge &e = V[x][i];
        if(e.to == father[x])   continue;
        father[e.to] = x;
        bottom[e.id] = e.to;
        val[e.to] = weight[e.id];
        dfs(e.to, dep+1);
        size[x]+=size[e.to];
        if(size[e.to]>M){
            M = size[e.to];
            key = i;
        }
    }
    belong[x]=0;
    for(int i=0; i<V[x].size(); i++){
        Edge &e = V[x][i];
        if(e.to == father[x])   continue;
        if(i==key){
            belong[x] = belong[e.to];
            rank[x] = rank[e.to]+1;
        }
        else{
            int p = belong[e.to];
            path_size[p] = rank[e.to];
            path_dep[p] = dep;
            path_top[p] = e.to;
        }
    }
    if(!belong[x]){
        belong[x] = ++path_cnt;
        rank[x] = 1;
        MP[path_cnt].clear();
    }
    MP[belong[x]].pb(val[x]);
}
void init(){
    path_cnt = node_cnt = 0;
    father[1] = 0;
    val[1] = 0;
    dfs(1, 1);
    int p = belong[1];
    path_size[p] = rank[1];
    path_top[p] = 1;
    path_dep[p] = 0;
    for(int i=1; i<=path_cnt; i++){
        tree[i] = ++node_cnt;
        build(i, tree[i], 1, path_size[i]);
    }
}
void C(int x, int v){
    int p = bottom[x];
    change(tree[belong[p]], rank[p], v);
}
void neg(int a, int b){
    int x=belong[a];
    int y=belong[b];
    while(x!=y){
        if(path_dep[x]>path_dep[y]){
            update(tree[x], rank[a], path_size[x]);
            a = father[path_top[x]];
            x = belong[a];
        }
        else{
            update(tree[y], rank[b], path_size[y]);
            b = father[path_top[y]];
            y = belong[b];
        }
    }
    if(a!=b){
        if(rank[a]>rank[b]){
            update(tree[x], rank[b], rank[a]-1);
        }
        else{
            update(tree[x], rank[a], rank[b]-1);
        }
    }
}
int Q(int a, int b){
    bool flag = 0;
    int ans, v;
    int x = belong[a];
    int y = belong[b];
    while(x!=y){
        if(path_dep[x]>path_dep[y]){
            v = query(tree[x], rank[a], path_size[x]);
            a = father[path_top[x]];
            x = belong[a];
        }
        else{
            v = query(tree[y], rank[b], path_size[y]);
            b = father[path_top[y]];
            y = belong[b];
        }
        if(!flag)   ans = v;
        else    ans = max(ans, v);
        flag = 1;
    }
    if(a!=b){
        if(rank[a]>rank[b]){
            v = query(tree[x], rank[b], rank[a]-1);
        }
        else{
            v = query(tree[x], rank[a], rank[b]-1);
        }
        if(!flag)   ans = v;
        else    ans = max(ans, v);
    }
    return ans;
}
int main(){
    int T;
    in(T);
    while(T--){
        in(n);
        int a, b;
        for(int i=1; i<=n; i++) V[i].clear();
        for(int i=1; i<n; i++){
            in(a); in(b); in(weight[i]);
            V[a].pb(Edge(b, i));
            V[b].pb(Edge(a, i));
        }
        init();
        char op[10];
        while(~scanf("%s", op) && op[0]!='D'){
            in(a); in(b);
            if(op[0]=='C'){
                C(a, b);
            }
            else if(op[0]=='N'){
                neg(a, b);
            }
            else{
                printf("%d\n",Q(a,b));
            }
        }
    }
    return 0;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值