- 博客(11)
- 资源 (4)
- 收藏
- 关注
原创 集成学习和Adaboost分类算法详解
集成学习(Ensemble Learning)也称为多分类器系统,通过构建和组合多个学习器来完成学习任务。集成学习是机器学习中一个非常重要且热门的分支,其用多个基(弱)学习器构成一个强学习器,一般基学习器可由决策树、神经网络、支持向量机、贝叶斯分类器等构成。可以在理论上证明集成学习思想是可提升分类器性能的。这里弱(基)分类器(Weak Classifier)指的就是那些分类准确率只比随机猜测略好一点的分类器,而强分类器( Strong Classifier)的分类准确率会高很多。
2025-11-16 10:52:48
549
1
原创 长短期记忆网络(LSTM)模型直观理解
再将更新后的细胞状态($C_t$)通过 tanh 压缩到 $- 1$和$1$ 之间,两者点乘得到当前输出($h_t$),同时$h_t$也是输向下一个LSTM的隐藏状态。实现:接收上一时刻输出($h_{t-1}$)和当前输入($x_t$),通过 sigmoid 计算出“遗忘权重”,在$(0,1)$之间,与细胞状态($C_{t-1}$)点乘,效果是根据当前信息弱化长期信息中的某些信息。比如units =50,表示隐藏状态 ($h_t$) 的维数和细胞状态 ($c_t$) 的维数两者都是 50 维。
2025-11-16 07:22:43
1675
原创 使用PdfLatex编译中文生成的pdf文件复制乱码问题
用PdfLatex编译一些中文模板制作的中文tex文件,能正常编译生成文件,能正常阅读,但是在文件中复制出的汉字是乱码。上一次用老版本的CTEX避免这一问题。使用: \usepackage{ccmap}
2024-04-05 15:15:29
592
4
原创 Latex中调整上下插图的间距
查到的方法大多数是在两个figure环境之间使用\vspace{-2cm}调整间距,在新版的CTEX中,这个无效。使用\newline\vspace{-2cm}有效但提示错误。找到的对新版CTEX有效的方法是:在两个figure环境中使用:\leavevmode\newline\vspace{-2cm},这能调整间距且不报错。使用如下命令在latex中插图时,缺省的间距较大。
2024-04-02 12:39:07
2377
2
原创 动态规划:找凑零钱
问题:一个地区有三种钞票,币值分别为{1、5、11},要凑够元,最少需要张钞票。按照贪心算法的策略,先凑出最大面值的11,剩下的4个分别对应四个1元的钞票,这总共需要5张钞票。实际上,的钞票也能凑够15元。这样就把原有的大问题转化为同类型的小问题。如果用用 f(n) 表示凑出 n 最少需要的钞票张数,从前面的分析可知:如果我们计算出f(1), f(2), ..., f(k),就能计算出f(k+1)。从归纳计算的角度看,我们就解决了f(n)的计算问题。归纳计算的公式为。
2023-04-01 08:06:37
544
原创 动态规划:求解整数序列最长严格递增子序列问题
整数列最长严格递增子序列问题是一个经典的算法问题。这个问题的目标是在一个给定的整数序列中,找到一个最长的严格递增子序列。
2023-03-31 16:11:57
433
原创 动态规划:求解任意长度钢条切割效益最大化问题
钢条切割问题是动态规划中的一个经典问题。这个问题的目标是将一根长度为n的钢条切割成若干小段,使得这些小段的总收益最大。这里的收益指的是每一小段钢条的价格之和。某公司出售一段长度为 i (单位: m) 的钢条, 对应的价格为 p_i, 钢条 长度为整数, 下面表格给出对应价格表。没有列出10以上的钢条价格,可以认为由于运输或设备问题,公司不能力售出10米以上的钢条。这个问题可以使用动态规划来解决。
2023-03-31 15:41:58
487
原创 旅行商问题的蚁群算法
由于这些场景中涉及到大量城市或地点之间的距离或成本,如果要求出精确解需要枚举所有可能路径并比较其总和,这样计算量会随着城市数量呈指数级增长,非常耗时甚至无法完成,它是组合优化中的NP困难问题。旅行商问题是一个经典的组合优化问题,它的提出和研究有着悠久的历史。最早的描述是1759年欧拉研究的骑士环游问题,即对于国际象棋棋盘中的64个方格,走访64个方格一次且仅一次,并且最终返回到起始点。1954年,Dantzig等人用线性规划的方法取得了旅行商问题的历史性的突破——解决了美国49个城市的巡回问题。
2023-03-20 13:41:25
948
原创 八数码难题——启发算法
因为每个节点都有一个启发值属性,需把启发值和节点一同放入open表,所以管理open表的方式略有不同,这里定义了一个新的expand_new函数管理open。还有,open表也不再按先进先出或后进先出的原则弹出节点,而是按启发值大小弹出节点。此外还需要定义一个按启发值大小弹出节点的新函数pop。启发算法和盲目搜索算法,同样需要open表和closed表,最大的不同之处是:每个节点有一个启发值,然后优先搜索启发值小的节点。代码在前面盲目搜索(带路径的)的基础编写,加入启发函数部分。需要移动 25 步,
2023-03-09 11:29:18
1220
1
原创 八数码问题——盲目搜索(带移动步骤)
向son_father 压入now 时,压入的是:now:now的父,这样的键对。以后到达目标节点,可以在搜索树son_fathe中反溯,从目标找父,在找父,一直找到startlayout。为了能打印出能移动到目标的移动步骤,一个自然的想法是随时管理一个到达当前节点的最短移动路径,这个想法的实现太慢了。还是选择常用的方法,建立搜索树。这个搜索树是一个字典,用来记录节点之间父子关系,字典名为 son_father。把这个python文件命名为:cha2_8数码_自己版_带路径.py 保存。
2023-03-09 08:00:13
1041
原创 八数码难题——盲目搜索(不显示移动步骤)
八数码难题是一个典型的搜索问题,出现在各种教材中,用来演示盲目搜索,启发式搜索的实现过程。这里给出的程序遵循标准的盲目搜索、启发式搜索算法编写,供初学基础搜索的同学比对参考。这里先给出只显示问题可解,不显示移动步骤的代码,可以直接简明地显示盲目搜索的步骤。
2023-03-09 07:04:20
451
Civil Engineering Formulas
2010-02-20
大学生数学竞赛的基本知识
2010-06-10
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅